
 Secure Internet
 Servers/Firewalls

 with

 Ian F. Darwin
 http://www.darwinsys.com

 http://www.openbsd.org

What you will learn today:

 How to
 install, configure and maintain
 a secure Internet server and/or firewall
 using software included in OpenBSD.

Who should be here today:

 Security Consultants who want to configure
OpenBSD

 System and Network Administrators with some
working knowledge of UNIX network configuration.

What you will not learn today

 Every last detail (only a few hours)
 UNIX history, basic commands, editing
 Internet history, usage
 Configuring X11 (hint: SuperProbe, XF86Setup /

xf86cfg)

 All about UNIX administration
 See man, FAQ, books...

Plan for the day:

 1 About OpenBSD & Security
 2 OpenBSD System Installation
 3 Network Services
 4 Mail Services
 5 LAN services
 6 Security services
 7 Logging Features
 8 Virtual Private Networks
 9 Keeping it secure
 Break mid-afternoon as per schedule

1 -- About OpenBSD & Security

 OpenBSD Is
 Mainstream standards-conforming UNIX-like system
 Based on 4.4BSD (25+ years of continuous UNIX

evolution)

 Project dedicated to code correctness &
system/network security

 Versatile
 Cryptography, VPN, networking in base
 Firewall
 Server
 Desktop?

 OpenBSD is NOT
 A Linux clone
 A SunOS/Solaris clone (but commands close to 4.1)
 SMP (not a goal at present)
 "User-friendly", GUI install, idiot-proof, ...

OpenBSD - Secure by Default

 Goal: Provide safe configuration out of the box
 Implies: minimal services enabled by default
 Only network services enabled by default: ssh, daytime/time

services, ident

 Sendmail and comsat (only on localhost)

 Total Code Audit: Multi-year, multi-national, ongoing
 Integrated cryptography (kernel and userland)
 Random number sources used throughout (net, pid,

...)

 Thorough documentation: man, FAQ
 FAQ is at http://www.openbsd.org/faq/, and on the CD
 Please learn to RTFM :-)

OpenBSD is Free Software

 Goal: Must be usable by anybody for anything
 Even commercial software
 Preferred licensing is standard BSD license
 GPL acceptable for optional components
 Unacceptable: "redistribute without modifications" clauses

 BSD versions of standard commands used where
possible

 See web site, goals.html

Code Auditing

 Three levels
 Kernel
 User code that ships installed ("base")
 User code in ports/packages

 Process
 Initial
 Ongoing - every change looked at
 all code viewable on the Internet via CVS
 Process: Look for bad code, and security bugs fall out in the

process
 See Theo de Raadt’s paper (on the web site) for more on auditing.

Security Basics

 What to protect, from whom
 External "system crackers"
 Script kiddies, real hackers, "doorknob rattling"

 Internal: cracker wannabes, frustrated non-sysadmins,
disgruntled employees, paid spies, ...

 Attacks: local, remote...
 Buffer Overflows, ...

Local Attacks
 Requires an account
 Escalate to system or root
 due to vulnerability in system software
 or careless administrator

Remote Attacks
 May/may not need account
 IP Stack attacks
 Eavesdropping
 Daemon attacks
 RPC
 TCP Session Hijacking

Denial of Service (DOS) Attack

 Use up some resource to prevent legit users
 Fill filesystem
 fork() loop - fill process table
 Remotely if possible
 Local DOS almost below our radar: do not give out accounts on

firewall

 DDOS: 12 million Monkeys pinging your firewall...
 from Windows 95 boxes on cable modems.

Buffer Overflows
 Cracker deliberately overflows a fixed-length buffer,

overwriting data or code beyond it with information
that changes the behavior of the server

 Extremely common form of problem - multiple recent IIS attacks
 Any code allocating and reading into a fixed-size buffer is

suspect

 Particularly if it uses C library gets() or makes other
assumptions about line length

Paranoia is Good
 Password file stealing
 Old hat - BSD pwdb avoids it,
 hides passwd encryption from /etc/passwd
 (master.passwd & pwdb only readable by root)

 Password guessing
 hide user names (mail rewriting)
 OpenBSD logs failed logins (by tty/pty)

 Firewall & server machines are not desktops
 very few services
 Not X11
 Swap File Encryption
 enable in /etc/sysctl.conf

 Buy switches, not hubs
 switch only sends packets to correct line via MAC address

snooping

 hub makes it easier for sysadmin (and cracker) to monitor traffic

Security Policy

 Must state what is/is not allowed
 Controls Firewall decisions
 Tells employees what is/is not OK

 No policy ==> Anything goes
 Need top management backing
 --> Office Politics
 Based in part on
 What you are trying to protect
 Data & Systems Integrity & availability

 Reference: Zwicky, Chapter 25
 Sonnenreich, p 34
 Cheswick & Bellovin

Security Policy on the Firewall

 Firewall policy can be:
 block everything, then pass exceptions
 More suitable for high-security (firewall)

 pass everything, then block exceptions
 More suitable for high ease-of-use (notebook, home/development computer)

 Firewall may
 forward permitted packets
 common, efficient, needs sysctl setting

 forward no packets, use application-level gateways
 more overhead, can be more secure if gateways carefully written
 no direct path for rogue packets
 Less common!

Building a Firewall

 Types of firewalls
 OpenBSD supports:
 packet filter and NAT/redirect
 pf (since-2.9; ipf before that)
 ppp/pppd

 bridge
 covered later

Firewall Terminology

 Bridge
 Machine has 2 interfaces but not IP addresses
 Originally hardware: OpenBSD has bridge driver

 Router
 machine has 2 interfaces with IP addresses,
 makes routing & policy decisions

 may be unix host with IP forwarding, or dedicated hardware

 Packet Filter
 Prevent unwanted packets from passing
 Allow selectively
 May redirect to inside

Firewall Terminology II

 Proxy (aka application gateway)
 Can forward around filter
 Listens on one interface
 Needed if
 forwarding off
 NAT/masquerading for multi-connection protocols (ftp, icq, H323)

 Bastion host
 Inside filter
 May store & forward STMP, proxy some services

 Outside Router aka "access router"; Inside router
aka "choke"

 Reference: Zwicky Chapters 6 & 11, Sonnenreich,
Chap 9

Inside Router
 Last line of defense
 Between main firewall and inside net
 Dedicated router or OpenBSD box
 No remote logins
 No "pc anywhere" access
 Console access only

 If firewall compromised, this is the only protection
against the firewall accessing all inside traffic

Firewall Config - Simplest

 So-called "external router" or "dual-homed host"

Firewall Config - Screened Host

 External router allows access to inside bastion
 Bastion makes allowed services available to rest of

inside net

Firewall Config - Screened Subnet

 Router provides access to subnet

Firewall Config - "Three-legged
firewall"

 Single OpenBSD host does all the work
 Suitable for many situations

Bridge Configuration

 Allows dedicated hardware address-based routing
 Originally to join network segments.
 Can be used in conjunction with pf to hide inside

hosts

 Usage: brconfig
 Specify MAC addresses, other behavior
 Also allows filtering (similar rules to pf)
 brconfig brname rule block/pass etc.

 Example: brconfig bridge0 add rl0 add xl0 up
 man brconfig

2 -- OpenBSD System Installation

 Semi-friendly install, non-GUI
 Partitioning
 Selecting software
 PostInstall configs
 Adding software

Partitioning

 Divide hard disk
 fdisk vs disklabel
 Partitions vs DOS attacks
 Sharing with other OSes

Selecting software

 OS load in n main pieces
 boot floppy
 base, etc, misc, man, comp, x*

 Avoid X on firewall
 Comp package: C/C++, headers, ...

PostInstall configs

 Read root mail
 Read man afterboot, web site /errata.html
 /etc/rc.conf
 /etc/sysctl.conf
 /etc/inetd.conf
 /etc/rc.securelevel
 /etc/rc.local

/etc/rc.conf
 This file is the main enable/disable file for userland

services
 On/Off lines like:
 named_flags=NO # for normal use: ""
 sshd_flags="" # for normal use: ""

 Settings flags (only if given server enabled) like
 nfsd_flags="-tun 4" # Crank the 4 for a busy NFS fileserver

 To keep upgrades simple, can edit /etc/rc.conf.local
(read after main file)

/etc/sysctl.conf

 This file enables/disables kernel features, e.g.,
 #net.inet.ip.forwarding=1 # 1=Permit forwarding

(routing) of packets

 #net.inet6.ip6.forwarding=1 # 1=Permit forwarding
(routing) of packets

 All lines are commented out to begin with.
 Details in sysctl(3) and sysctl(8)
 Try this: sysctl -a | more

Other files
 /etc/securelevel
 BSD kernel has "secure levels"; normal secure level does not

allow:
 time changes
 loading modules
 changing immutable files

 These must be done in this sh script

 /etc/rc.local
 A sh script run near the end of boot
 Can start local daemons etc here.
 Remind yourself to boot up your spouse’s computer :-)

Ian’s Favorite PostInstalls
 Change root shell (use vipw)
 Customize dot files in ~root (/root)
 Configure sudo
 Remove unused accounts (uucp)
 "Insecure" console and ttyC* in /etc/ttys
 ==> Requires root passwd to go single user

 Add "portmap=NO" in /etc/rc.conf.local; comment
out rusers and rstatd from /etc/inetd.conf

 ==> This is fixed in 3.2
 Enable minimal PF
 Even on inside machine - see examples later

 Add packages...

Adding your favorite UNIX software I

 /usr/ports (extract ports.tar.gz into /usr)
 Third-party software ported for you
 cd category/package
 "make" downloads source, extracts, patches, builds it
 "make install" builds package, and installs from it!

 subdir categories archivers, audio, databases, devel, games,
lang, mbone, misc, net, news, plan9, security, shells, sysutils,
textproc, www, x11, ...

Adding UNIX software II

 Packages
 Ports that are pre-compiled: just pkg_add
 Built by somebody having done "make package" in port directory

 Package once, install many

Ports/Packages to know about

 emacs, bash, TeX (teTex), Python, PHP
 mysql, msql, postgresql, BerkeleyDB (newer version

than in base)

 spiff, idiff, zap, magicpoint, xbill
 gimp, xv
 enlightenment, windowmaker, full KDE, full GNOME
 Java: JDK (native 1.2; 1.3/1.4 currently

linux-compat), Kaffe

 Not ports:
 Apache, SSH, groff, Perl5 (all built into base)

Adding UNIX software III - Roll your
own port

 Thousands of apps already ported
 Easy to make your own
 Makefile, pkg/{DESCR,PLIST}
 See web site /porting.html

 Test like mad, mail to ports@openbsd.org
 Say what the program does!
 If good it will get committed

Add Your Own S/W IV - Emulation
 OpenBSD emulates Linux, other-BSD and UNIX

binaries

 Fast kernel implementation (system call switch)
 Needs appropriate userland libraries
 Works: Corel WordPerfect, Netscape

Communicator, Applix OfficeWare
 (Star Office?)

 Worked: Adobe Framemaker for Linux - Beta
(expired :-()

 Difficulties: too-clever install scripts that "know" real
paths

 Directory Tree:
 /emul/linux/{etc,lib,usr,...}
 /emul/freebsd/{etc,lib,usr,...}

 Packages exist for installing Linux (RedHat) and
FreeBSD libs

 Reference: man compat_linux, man compat_bsdos,
etc.

3 -- Network Services
 httpd
 ftpd
 rlogin/telnet/SSH
 DNS

httpd

 Default httpd is Apache 1.3.x, included in OpenBSD
base

 Just enable in rc.conf
 Installs under /var/www/{cgi-bin, conf, htdocs, icons,

logs}
 Change conf/httpd.conf, at least for DocumentRoot :-)

 DSO support most platforms
 Ports of PHP3, JServ, etc. make DSO
 Other HTTP servers in ports/packages

httpd and chroot

 Effective with OpenBSD 3.2, Apache HTTPD
chroots into its ServerRoot by default

 CGI must be within ServerRoot
 May want to link statically, to avoid huge list of shared libs in

ServerRoot

 UserDir (~/public_html) cannot access e.g., /home
 All DocumentRoot(s) must be under ServerRoot
 NO files/dirs writable by www/www must exist under ServerRoot

 Can disable with -u, but should not for security

HTTPD
 Adding SSL/HTTPS
 Buy or build "certificate"
 Used for (1) trust/identity (2) encryption
 For #1, need to pay Verisign/Thawte near-monopoly
 For #2, can fake it, see scripts/rsa_master on handout floppy

 Then set http_flags to -DSSL in /etc/rc.conf

ftpd

 Must enable in rc.conf
 Default fpd is Berkeley FTPD; wuftp, proftpd in

ports/packages

 Simpler, less flexible than wuftp
 But more secure?
 Does use /etc/ftpusers (disallowed) and

/etc/ftpchroot (chrooted)

rlogin/telnet/SSH

 rlogin and telnet are insecure - do not enable
 ssh replaces them
 scp and sftp replace ftp

ssh - secure (remote) shell

 OpenSSH maintained by OpenBSD, included in base
 Does not transmit password unencrypted (telnet, ftp,

rlogin do)

 RSA/DSA identity for equivalence (avoid .rhosts)
 Client is ssh, usage: ssh [user@]host: [command]
 Also scp client
 Usage: scp [[user@]host:]file ... [[user@]host:]file_or_dir
 e.g., same as "cp" but any file can have host (and optional user)

 Ssh can "forward" connections for other TCP
services, encrypting them

 (examples later)

ssh - other programs

 sshd - daemon, must run on machines that will be
logged into

 one of the few services enabled by default

 ssh-agent - to avoid typing passwords all the time
 run from our e.g., xdm startup files

 sftpd, sftp-server - FTP-like file transfer program
over SSH

User Management

 BSD uses Berkeley db password database
 /etc/master.passwd -> /etc/passwd.db

 /etc/passwd is synthetic; doesn’t include passwd
encryptions

 Do not edit /etc/passwd; must use vipw

 adduser command to add accounts
 Interactive
 Also useradd similar to SVR4 command

User Management and login.conf

 Recent addition is /etc/login.conf
 Part of "BSD Auth" mechanism, analog of Linux PAM
 Login group (field 5 in master.passwd format) looks

up in this printcap-format file

 Can give user groups different login policies, limits,
password aging, etc.

 Authentication methods: Krb 4 or 5, password,
skey, ActivCard X9.9, CRYPTOCard X9.9, Digital
Pathways SecureNet, Generic X9.9, etc.

 Ports software includes an sysutils/login_ldap, an LDAP tie-in
for BSD Auth.

 auth-service lets you provide a custom program to
approve/deny logins

User Management Example - S/Key

 BSD-Auth supports variety of authentication tokens,
e.g., S/Key from BellCore

 1) On a local login or over a trusted port, use
"skeyinit jo"

 Enter secret passphrase: enter some words here
 Again secret passphrase: enter some words here
 ID jo skey is otp-md5 99 serv71564
 Next login password: BOUT SAT SEEN ARM STIR

VEND

 2) Generate a list of passwords using "skey -n 100
100 serv71564"

 (Prompts for secret password)
 Keep this list safe!

User Management Example - S/Key
(cont’d)

 3) Can now login using username:type, e.g.,
 ssh jo:skey@server
 otp-md5 98 servo29818
 S/Key Password:
 $
 - Can press enter to type S/Key password in clear

User Management - More Security

 Your S/Key "list" makes a lucky find for the hacker!
 Better to use one of the hardware tokens (SNK,

ActivCard, CrypoCard)

 Or the "generic" X9.9 program x99token
 See man pages {snk,activ,crypto}{init,adm}

DNS
 Domain Name Service and Bind
 Base system includes BIND/named 4.x - heavily

audited

 Chroot jail, /var/named/
 dev/ etc/ named-xfer named.boot namedb/db.*
 BIND 9.x in ports/packages, some files new format

4 -- Mail Services
 smtpd listener
 sendmail
 postfix? qmail? exim?
 POP/IMAP

smtpd - SMTP listener

 small, audited mail receiver
 avoids any outside contact with sendmail
 Spools into a chroot jail
 Offers rule-based SPAM filtering capability

 smtpfwdd de-spools and gives to real MTA

smtpd Filtering

 smtpd receives mail and stores it (sendmail -bd
replacement)

 smtpfwdd passes it to sendmail or can relay to another machine

 Pretends not to be OpenBSD ("4.1 SMI" :-)
 Runs in chroot jail /var/spool/smtpd
 ./etc/smtpd_check_rules
 Similar to Sendmail anti-spam but easier to write :-)

SMTPD Filter Rules
 Patterns in src, from
 ALL
 KNOWN|UNKNOWN
 NS=
 USER - in from - match in identd
 Examples
 deny:UNKNOWN:AL::ALL
 deny:*.spamhaus.com *.junkmail.com:ALL:ALL
 noto:ALL:ALL:*%*@*:551 Sorry %H (%I), I don’t allow relaying

to %T

 noto:RBL.rbl.maps.vix.com:ALL:ALL:550 Mail from %I in MAPS
RBL being blocked, see http%C//maps.vix.com/rbl/

 Reference
 man smtpd, smtpfwdd
 Commented examples in /usr/share/smtpd

sendmail
 3.2 includes sendmail 8.12.6
 Enable in rc.conf
 Config files in /etc/mail/

postfix? qmail?

 Alternate MTA programs
 In ports/packages
 /etc/mailer.conf maps commands to programs (i.e.,

from sendmail to actual MTA)
 mailq /usr/libexec/sendmail/sendmail

POP
 popa3d POP implementation in base
 Other POP/IMAP software in ports tree
 Consider shipping over ssh
 Windows box logged into OpenBSD
 Windows SSH: forward pop3 local to pop3 remote
 Then invoke pop3 mail reader, tell it server is local

 KMail "pre-command" can do this too
 sudo ssh -f -x -L 110:localhost:60210 server sleep 60

5 -- LAN services
 Interface configuration
 PPP and friends
 Routing, ARP, DHCP
 NIS, NFS
 Samba

Interface configuration

 Standard unix commands:
 netstat -i
 netstat -i -f inet
 ifconfig to set addresses
 ifconfig ne3 234.56.78.9
 ifconfig also has media options

 A few devices have special-purpose programs, e.g.,
wicontrol

PPP and friends
 PPP supported by userland ppp or pppd
 ppp more flexible
 pppd does more work in kernel

 Either can be used in most cases
 PPPoE supported by ppp(8) + pppoe(8) (in base)

Routing, ARP, DHCP

 Standard UNIX route command
 /etc/mygate names default gateway at boot time

 rarpd, bootpd, and dhcp server all included
 Enable in /etc/rc.conf
 Configure DHCP service (listening on inside

interface!) in /etc/dhcpd.conf

 DHClient in base (even on boot floppy!)
 /etc/hostname.xx0 can contain as little as "dhcp"

XDM
 Don’t install X on firewall
 XDM allows X graphical login; enable in rc.conf
 KDE and GNOME have own GUI logins
 See ports/packages

NIS
 NIS (formerly Yellow Pages)
 Standard implementation: ypclient script sets up
 Need + line in master.passwd, /etc/group - no nsswitch.conf
 Beware of serving blowfish passwords to proprietary unixes

 Do NOT allow NIS in/out of your security perimeter

NFS
 Sun’s Network FileSystem spec; 4.4BSD includes

BSD NFS

 Not enabled by default
 Hard to trust: DO NOT allow in/out of firewall (2049 UDP)

 Server publishes filesystems in /etc/exports
 Read caveats in exports(8)!

Samba - the SMB/Netbios server for
UNIX

 Samba lets UNIX serve MS-Windows boxes
 Looks just like a Windows server to PC’s
 In ports/packages

 Difficult to believe this can be secure
 Do not allow SMB in/out of your security perimeter
 Block ports 137, 138, 139

6 -- Security services

 sudo
 Packet Filtering
 Kerberos
 ktrace/systrace

sudo
 Allows root access without password, or with

different password
 File /etc/sudoers controls who can do what
 Keeps root password out of circulation!

 visudo (as root!) to edit the control file

Tcpd - simple TCP connection
filtering

 Wietse Venema’s "tcp wrappers" package in base
 replace inetd.conf entry with tcpd
 checks if connection is allowed
 if so, forwards to real server.
 tcpd is in base system
 See man 8 tcpd

PF - Packet Filter
 "pf" controls what packets are allowed in/out
 Allows full packet filtering firewall functionality in

kernel

 OpenBSD uses pf (packet filter), originally by Daniel
Hartmeir

 Not Darren Reed’s ipf and ipnat like some other BSDs
 Somewhat compatible rules files, but many new features

NAT - Network Address Translation
 What Linux calls "IP masquerading": one IP on

outside, entire LAN inside

 Controlled by /etc/ipnat.rules and ipnat= line in
/etc/rc.conf

 map ppp0 10.0.0.0/8 -> ppp0/32 portmap tcp/udp 10000:20000

 Intruder may not even know the IP of the inside
machines

Packet Filtering - What to filter

 Obviously depends on your environment and firewall
organization

 Can block by protocol (TCP, UDP, ICMP...), and
specifics (next page)

 General idea: block any packets except what you
want in

 E.g., for Mail, web server:
 allow SMTP in
 allow HTTP in
 allow ICMP so users can ping you

The pfctl program - general notes

 Must run pfctl -e to enable filtering
 Done for you by setting "pf=YES" in /etc/rc.conf or

/etc/rc.conf.local

 This setting also causes /etc/pf.conf to be invoked

 Can test without actually changing pf rules with pfctl
-n

 Can display rules, state, etc., with -s, e.g., -s nat, -s
rules, etc.

 -s info displays log statistics if logging interface (see below)

 pf does not forward packetes
 must also enable net.inet.ip.forwarding=1 in /etc/sysctl.conf

How to Filter - /etc/pf.conf

 This file contains NAT and packet filtering.
 Rules must be in this order: options, scrub, NAT,

filter.
 NAT occurs BEFORE filtering

 N.B. NAT is first match; packet filters are last match,
 Command syntax changes over time
 Man page pf.conf(5) has a BNF for the parser along with more

details

pfctl - options

 Options control timeouts, logging, limits,
optimization, etc.

 Timeouts: interval n frag n
 How often to purge expired states and fragments, how long to

keep packet fragments

 For stateful connections, timeouts for various
modifiers, e.g.,

 tcp.first - time from first packet, if no packets in this time,
connection discarded

 Other parameters for phases of TCP connection, UDP, and
"other" - see pf.conf(8)

 Syntax: set timeout { tcp.opening 30, tcp.closing 360
}

pfctl options (continued)

 Log interface - enables statistics on a per-interface
basis

 set loginterface ne3	# set to "none" to disable
 optimization sets general parameters for one of

several general types, e.g,
 default, high-latency, aggressive or conservative
 aggressive - quickly expire connections to reduce memory
 conservative - keep connecions that might be still in use

 block-policy
 sets the default for what to do with blocked packets
 drop (drop silently) or returnn (RST for TCP, ICMP UNREACH

for others)

 Limiting - maximum entries in memory pool
 set limit states 10000 - max # of entries for ’keep

state’ rules

 set limit frags 1000 - max # of entries for packet
fragments (’scrub’ rules)

pfctl - Scrub Rules

 Packet reassembly on other OSes can be fooled by
using misaliged offsets to sneak bad things past
inspection code

 Or even crash/hack the kernel by using "interesting" offsets/sizes

 Scrub rule causes packet to be entirely
re-assembled before other rules are applied

 A form of sanity/sanitization
 Only for IPV4 packets - IPV6 fragments are blocked

 Can scrub unconditionally, by fragment cropping,
dropping overlap

 scrub in on ne3 all fragment reassemble
 "all" could be set to src/dest address or protocols

pfctl - NAT

 NAT rules include nat, binat and rdr
 "nat" is normal NAT (IP masquerading)
 # my naughty client, using somebody else’s real net 144 on the

inside

 # nat anything from 144.19.74 to 204.92.77.100
 nat on $ext_if from 144.19.74.0/24 to any -> 204.92.77.100
 nat on $ext_if from any to any -> $ext_if

pfctl - rdr rules

 "rdr" redirects incoming to another IP and/or port
 for mapping to e.g., a NATted server
 # Redirect "V1"’s IPalias, for 80 and 443, to machine .22 inside
 rdr fxp1 201.31.6.100/32 port { http, https } -> 192.168.20.22

rdr and FTP firewalling

 Outgoing FTP through a firewall is problematic due
to use of multiple ports

 OpenBSD supports an FTP proxy that understands
pf

 # translate outgoing ftp control connections to send
them to localhost

 # for proxying with ftp-proxy(8) running on port 8081
 rdr on fxp0 proto tcp from any to any port 21 ->

127.0.0.1 port 8021

 Run ftp-proxy from inetd:
 127.0.0.1:8021 stream tcp nowait root

/usr/libexec/ftp-proxy ftp-proxy

 Also need to allowed remapped ports, either by port
number or by name

 So we discuss filter rules next

pfctl - Packet Filtration Rules

 To set a default "allow nothing" stance, first rules
should be

 block in all
 block out all
 Rules syntax:
 in or out - direction
 quick - bypass all subsequent rules
 on interface - limit to this interface (dc0, ne3 - macroizable...
 address family - inet or inet6
 proto - tcp, udp, icmp, ipv6-icmp

filter rules continued
 from src-ip port src-port
 to dst-ip port dst-port
 Addresses can be hostname, interface name, explicit IP, in CIDR notation
 Parenthesis around interface name means to reload the IP of the interface if it

changes - no explicit reload needed

 port numbers can be explicit, or relational
 The six obvious relationals = != < <= > >=
 >< range <> except-range (both exclusive)
 port 1024 >< 2048 - actually ports 1025-2047

filter rule examples

 pass in all # don’t use this!
 pass in proto tcp fom any to any port 25
 block in log on dc0 to port 137
 block in log on dc0 from any to any port 2049 # nfs
 pass in on dc0 proto tcp from any to any port {ssh,

smtp, domain}

 # traffic "from" our address should not appear on any
other interface

 block in on ! dc0 inet from 200.1.1.0/24 to any
 This last is so useful it has been built-in
 antispoof for dc0 inet
 expands to
 block in on ! dc0 from 200.1.1.1/24 to any
 block in inet from 200.1.1.1 to any

pfctl and stateful inspection

 rule with "keep state" enables this
 only check initial packets; subsequent packets are

"pre-approved"
 forged packet may have bogus sequence; will be ignored
 faster (binary lookup)

 TCP: state ("established" or S/A)
 Syn -- synchronize A -- Acknowldgement, R -- RST
 P -- Push U -- Urgent, ...
 Packets: 1 A=0, S=1, 2 A=1, S=1 3-n A=1, S=0
 "flags S/SA" says look at S bit out of S|A, ignoring

other parts of the TCP flags

 "flags /SA" means S and A must be unset ("none out
of S or A");

Stateful Inspection (cont’d)

 # Allow inside machines to initiate connections to outside
 pass out on $ext_if proto tcp from any to any flags S/SA

keep state

 # allow outside machines to initiate connections to SMTP
 pass in on $ext_if proto tcp from any to any port 25 flags S/SA
keep state

 pass in on dc0 proto tcp from any to any port {ssh,
smtp, domain} flags S/SA keep state

 For UDP (stateless protocol!), keep state matches
only host address and port

 Can use "modulate state" which also randomizes the
sequence numbers - for dealing with other IP stacks
that give predictable TCP sequences

User and Group Filtering

 Can block or pass TCP/UDP by user (EUID/EGID)
when socket created

 block out proto {tcp,udp} all
 pass out proto {tcp, udp} all user { < 100, ian, geoff} keep state
 pass out proto tcp port 25 user { > 0, unknown }

 Example: FTP proxy runs as user "proxy"; enable
remapped data ports

 pass in on dc0 proto tcp from any to dc0 user proxy keep state

authpf - per-user PF rules

 User shell for firewall: changes rules when you login,
undoes it when you log out

 Per-user config files
 SSH Login
 Begin and end are logged via syslog

 Why:
 Let users update files in DMZ: allow ftp from inside to web

server only when logged in

 Allow inside users to access the outside (or vice versa)
 Allow outside users selective access to inside
 In conjunction with stronly authenticated login

authpf (continued)

 Rules
 Same format as normal, but defines user_ip macro
 In /etc/authpf/users/USER_NAME/authpf.rules
 If not found, /etc/authpf/authpf.rules (required file) used

 Flexible configuration
 man 8 authpf for more details

pfctl - macros

 Good to define interface name in one place
 many rules required interface name: ne3, dc0
 This gives only one place to change

 Usage:
 ext_if=dc0
 int_if=ne3
 scrub in on $ext_if all fragment drop-ovl

 Also for IP addresses
 remote_lan = "123.45.6.0"

pfctl macros - dynamic

 What about notebook users? Sometimes on dc0 and
sometimes on wi0?

 No "if" logic in pf.onf
 No -D option to pre-define ext_if
 Can pipe into pfctl, so use
 sed ’s/EXTERNAL_IF/$if/’ /etc/pf.conf | pf -f -

Other Filtering Mechanisms

 Pppd program offers simple filtering:
 Similar syntax to tcpdump expressions
 pass-filter "port != smtp" inbound

 User-level ppp program has filtering rules
 Will also do NAT
 Has in/out filter for security, and dial/alive filters for dialing
 set filter in 0 permit tcp dst eq 113
 set filter out 0 permit tcp src eq 113
 set filter in 1 permit tcp src eq 25 estab
 set filter out 1 permit tcp dst eq 25

Kerberos
 MIT’s authentication scheme: Kerberos

authentication for networking services

 E.g., "fixes" telnet, r* and other protocols by using
Kerberos auth

 ensures user is authenticated
 prevents cleartext passwords

 Common on inside networks
 Kerberos IV implementation included in base system
 From KTH in Sweden, not MIT implementation due to US export

rules

 Kerberos V implementation based on KTH "Heimdal"
in base

 see "info heimdal" and /etc/kerberosV/README

NTP
 Network Time Protocol
 Keeps internet machines time synchronized
 Security...

 Client support in rdate -n in base
 Userland code (ntpd, ntpdate, ...) in ports/package net/ntp

ktrace
 A standard kernel system call trace mechanism
 By itself, lets you see what a program under trace is

doing

 Very verbose:
 $ ktrace date
 Wed Jan 6 22:15:31 EST 2004
 $ kdump | wc -l
 125

New: systrace: a system call filter

 Run it with -A to generate profile of what a command normally
does

 Then run with -a to ensure the command does not do anything it
didn’t do before!

 Can prevent a compromised program from accessing files it
shouldn’t

 Since these won’t be in the systrace policy

Example systrace

 $ systrace -A date
 $ more ~/.systrace/bin_date # date is in /bin
 Policy: /bin/date, Emulation: native
 native-__sysctl: permit
 native-fsread: filename eq "/<non-existent filename>: /etc/malloc.conf" then permit
 native-issetugid: permit
 native-mmap: permit
 native-break: permit
 native-mprotect: permit
 native-gettimeofday: permit
 native-fsread: filename eq "/usr/share/zoneinfo/Canada/Eastern" then permit
 native-read: permit
 native-close: permit
 native-fstat: permit
 native-ioctl: permit
 native-write: permit
 native-munmap: permit
 native-exit: permit

Example Systrace continued

 For a shortened example, using "date" instead of a
network server

 (just so it fits in slide format)
 Remove the last line, denying "exit", run command under

systrace

 $ systrace -a date
 Wed Jan 6 22:20:35 EST 2004
 Memory fault (core dumped)
 $ tail -1 /var/log/messages
 Jan 6 22:20:35 daroad systrace: deny user: ian,

prog: /bin/date, pid: 3288(0)[0], policy: /bin/date,
filters: 14, syscall: native-exit(1), args: 4

 Result: Aggressing user sees memory fault, thinks
his attack crashed the program

 Administrator sees what really happened: program tried to do
something not in its policy file
Systrace - privilege escalation

 Neat feature: privilege escalation lets you run
individual system calls as setuid or setgid

 Details: systrace(1) for usage; systrace(4) describes
underlying kernel support

 Example: let unprivileged Tomcat bind port 80 as root
 native-bind: sockaddr eq "inet-[0.0.0.0]:80" then

permit as root

 Systrace must be run as root, of course
 And run with -c uid:gid to say who to run as

 Useful for ISPs to constrain what files virtual-hosted
web server scripts (or Servlets in the case of
Tomcat) have access to.

7 -- Logging Features

 Need logging to know who’s doing what
 syslog and OpenBSD
 IP logging
 Test tools & IDS

Syslogd

 chroot jail
 no UDP by default (DOS attack); must filter if enabled
 Multiple logs
 newsyslog.conf controls secrecy of certain logs

pflogd

 packet filter logging mechanism
 reads from packets logged by pf into /dev/pflog0
 writes to a logfile e.g. /var/log/pflog in binary tcpdump(8) format
 Just use tcpdump to format them

 GOOD PLACE TO PAY ATTENTION if you turned
on reasonable logging

 Takes part in log rotation via newsyslogd

Testing Tools

 Tools to simulate an attack
 "Morally neutral" (used for good and evil)

 tcpdump (in OpenBSD base system)
 netstat - standard UNIX tool, traditional syntax
 nc/netcat - in OpenBSD base system
 nmap - gather information on a site
 in ports/packages

 nessus - detailed vulnerability scanner
 Others: see ports/net, ports/security

Intrusion Detection
 Want to know real-time of attacks
 Probes (nmap used by bad guys)
 Attacks
 Intrusion Detection Software (IDS)
 NFR - Network Flight Recorder
 "Snort"
 Both are in ports/packages

Built-In Intrusion Detection?
 daily insecurity report
 changed permissions
 important file changes
 device & setuid changes

 i.e., most of "tripwire" functionality is in OpenBSD
base

 See Also: FreeBSD Forensics Using Ports talk
tomorrow

8 -- Virtual Private Networks
 What & Why
 static setup
 photurisd
 isakmpd
 Conversing with the dark side

What & Why

 A routing between two of your sites, over networks
you don’t control

 Behaves like point-to-point link
 Encrypted for security
 Using IPsec protocol

 Requires secret keys exchanged between both ends

Faking it

 Use ssh to forward various protocols
 Not really a VPN, but very easy
 Host-to-host, not to network
 This is what some books consider a VPN to be :-)
 Useful for e.g., forwarding a service or two over an

encrypted tunnel

 Use -L and/or -R on UNIX SSH to forward services.
 My smtunnel script sets up to forward SMTP from

desktop machine to server:
 sudo ssh -f -x -L 25:localhost:25 ian@server sleep 60

PPTP?
 PPTP is an outgrowth of PPP
 encrypts ppp packets
 encapsulates using gre driver

 "poptop" server in ports tree
 IPSec is more secure

IPSec Protocols
 IPSec (IP Security) consists of three protocols
 AH (authentication header)
 verifies header: confirm message validity, incl. src and dest

 ESP (encapsulating security payload)
 encrypts data

 ISAKMP (SA Key Management Protocol)
 Framework for key exchange, needed by AH and ESP
 IKE most common, also "photuris" and manual key exchange

 Terminology
 SPI - security parameter index, a "conversation number"
 SA - security association: (SPI, dest IP, and AH/ESP)
 Flow - data transfer path

VPN IPSec Basic Steps

 Enable protocols in /etc/sysctl.conf
 net.inet.ip.forwarding=1 net.inet.esp.enable=1
 net.inet.ah.enable=1
 Choose a key exchange method
 manual, photuris, or IKE

 Either
 Create a "security association (SA)" for each node
 Create the IPSec "traffic flows"
 Or
 Configure and start isakmpd

 Configure firewall rules
 Next few pages give details, then example

Manual key setup

 ipsecadm creates SA’s ipsecadm creates flows
 See /usr/share/ipsec/rc.vpn for online example
 See handout/scripts/vpnstart for another

Photurisd key exchange

 Designed by Phil Karn and William Simpson
 They consider IKE flawed

 OpenBSD developers made first "photuris"
implementation

 Described in photurisd.8
 Sample file /usr/share/ipsec/photuris.startup

ISAKMP (Oakley, IKE) key exchange

 OpenBSD developers wrote own implementation
 Documented in isakmpd.8
 Config and sample in isakmpd.conf(5)
 Requirements:
 kernel with options CRYPTO and IPSEC, and pseudo-device

enc

 enable AH and ESP with sysctl (uncomment lines in sysctl.conf)

VPN Example using isakmpd

 1) set up isakmpd.conf files for both machines
 55 lines long; see isakmpd.conf.{a,b} in handout
 must be mode 600 (or 400)

 2) set up isakmpd.policy files (same on both
machines)

 Keynote-version: 2
 Authorizer: "POLICY"
 Conditions: app_domain == "IPsec policy" &&
 esp_present == "yes" &&
 esp_enc_alg != "null" -> "true";

 3) Configure firewall rules

Firewall Rules for VPN Example -
Machine A

 gatewA = "192.168.1.254/32"
 gatewB = "192.168.2.1/32"
 netA = "10.0.50.0/24"
 netB = "10.0.99.0/24"
 ext_if = ne3

 # default deny
 block in log on { enc0, $ext_if } all
 block out log on { enc0, $ext_if } all

 # Passing in encrypted traffic from security gateways
 pass in proto esp from $gatewB to $gatewA
 pass out proto esp from $gatewA to $gatewB

 # Passing in traffic from the designated subnets.
 pass in on enc0 from $netB to $netA
 pass out on enc0 from $netA to $netB

 # Passing in isakmpd(8) traffic from the security
gateways

 pass in on $ext_if proto udp from $gatewB port =
500 to $gatewA port = 500

 pass out on $ext_if proto udp from $gatewA port =
500 to $gatewB port = 500

Isakmpd startup

 Start as root: /sbin/isakmpd
 Debugging: isakmpd -d -DA=99 # foreground,

maximally verbose
 isakmpd -l file - logs packets in tcpdump format.

 Program to spy on messages between isakmpd and
kernel, analogous to tcpdump but for PF_KEY traffic,
reportedly at

 http://pobox.com/~listjunkie/keydump.tar.gz
 See also VPN Using *BSD talk by Eilko Bos;

OpenBSD server, FreeBSD roaming clients - full
details

Conversing with the dark side

 Windows machines can talk to OpenBSD VPN
 Must use isakmpd (not photuris)
 Some restrictions/limitations apply
 See Markus Friedl’s page
 http://wwwcip.informatik.uni-erlangen.de/~msfriedl/ipsec-win2k/

9 -- Keeping It Secure

 System updates
 If it ain’t broke, don’t break it?
 Do watch security-announce list at bare minimum (more on lists

below)

 How-to?
 FTP snapshots, install using boot floppy "upgrade"
 cheat and untar (see my quickupgrate script)

 Buy new CD’s
 Easiest - updated every 6 months

 CVS, anonCVS
 Update entire source tree; build & boot kernel; make build...

Building OpenBSD Kernel

 edit config, config, make, cp, reboot
 Config file
 /sys/arch/{i386,sparc,...}/conf/ file SYSTEMNAME
 GENERIC includes most everything

 config SYSTEMNAME; cd
../compile/SYSTEMNAME; make clean depend bsd

 mv /bsd /obsd; mv bsd /; reboot

Building the rest of OpenBSD

 Once the new kernel is booted:
 cd /usr/src
 sudo make obj && sudo make build
 N.B. This includes "make install", updating the running system!
 Otherwise read and understand the Makefile

Don’t break it
 Don’t tinker, nor let others (few root)
 Don’t do development on firewall
 Test first pf/nat testing

This Week
 FreeBSD VPN Case Study - Sat. 12:00
 Uses OpenBSD as its server!

 Performance Tuning OpenBSD - Sat. 4:00
 Philip Buhler & & Henning Brauer

 Authentication in FreeBSD 5 - Sat. 4:45
 Other OpenBSD developers are here - talk to us!

Learn More from Books
 Design of 4.4BSD Operating System
 McKusick, Bostic, Karels, Quarterman
 Karels is the keynote speaker tomorrow!

 Firewalls with Linux and OpenBSD
 Sonnenreich & Yates (2e? 1e refers to older ipf)

 Building Internet Firewalls, 2e
 Zwicky, Chapman, et al, O’Reilly.

 Hacking Exposed (various editions)
 McClure, Schambray, Kurtz

 UNIX System Administration, 3e
 Nemeth et al.
 Internet Firewalls book
 Cheswick & Bellovin - classic, bit dated, 2e in preparation

 See http://www.openbsd.org/books.html

Help Online

 OpenBSD Site http://www.openbsd.org/
 FAQ’s	http://www.openbsd.org/faq/
 Man pages	http://www.openbsd.org/cgi-bin/man
 User Groups http://www.openbsd.org/groups.html
 Consultants http://www.openbsd.org/support.html
 OpenBSD Journal http://www.deadly.org/
 Daemon News http://daily.daemonnews.org

Mailing Lists

 Mailing Lists http://www.openbsd.org/mail.html
 Main lists:
 misc - newbie, installation, device questions
 ports - all about ports/packages
 tech - only for hard technical questions
 source-changes: every single commit (volume warning!)

 Lurk a month before posting
 Search the archives (see mail.html) before posting
 Read all of mail.html before posting
 Never say "please reply to me directly..."
 If you are too busy to read the mailing lists, we have consultants

for hire (support.html) who can read it to you :-)

The One Marketing Slide

 We want OpenBSD to remain
 free
 non-commercial
 To do this we need money
 Please don’t buy our CD’s unless you want to :-)
 Write code.
 Write documents. Translate documents!
 Donate $ or equipment (see want.html)
 Buy CD’s, T-Shirts (via the web or here at the show)

 Thank you!

Finale
 Questions and Answers

 Ian Darwin
 http://www.darwinsys.com/

 Example files available (next week) from
 http://www.darwinsys.com/training/obsd-firewalls

About The Slides
 Presentation written by Ian F. Darwin
 Notes originally entered into Lotus Freelance
 Quickly exported to plain text!

 This presentation edited with vi on OpenBSD, and
delivered with the free software MagicPoint.

 -- The End --

