
New Evolutions in the X Window System

Matthieu Herrb∗ and Matthias Hopf†

October 2005

Abstract

This paper presents an overview of recent and on-going evolutions in the
X window system. First, the state of some features will be presented that are
already available for several months in the X server, but not yet widely used
in applications. Then some ongoing and future evolutions will be shown: on
the short term, the new EXA acceleration framework and the new modular-
ized build system. The last part will focus on a longer term project: the new
Xgl server architecture, based on the OpenGL technology for both 2D and
3D acceleration.

Introduction

The X window system celebrated its twentieth birthday last year. After some quick
evolution in its early years, its development slowed down during the nineties, be-
cause the system had acquired a level of maturity that made it fit most of the needs
of the users of graphical work stations. But after all this time, pushed by the com-
petition with other systems (Mac OS X and Microsoft Windows) the need for more
advanced graphics features triggered new developments.

The first part of this paper is going to describe some of these features that
are already available (and have been used) for a couple of years but not necessarily
known by users of the X window system. A second part will address some on-going
work that will be part of the X11R7 release: a new 2D acceleration architecture and
the modularization of the source tree.

In the third part, a complete redesign of the device dependent layer of the X
server, based on OpenGL, will be presented. It will allow a better integration of
accelerated 2D and 3D graphics and make it possible to take advantage of the pow-
erful 3D acceleration engines available today even in low end graphics adapters.

∗CNRS-LAAS
†SUSE Labs



1 Already available new features

This section aims to remind a couple of the already available features, used by some
toolkits to get better user experience with X: client-side font rendering, including
anti-aliasing using Xft2 and fontconfig as well as rendering improvements based
on the Render and Damage extensions.

It also presents the Composite extension and explains how the composite man-
ager can be used to achieve various effects (transparency, shadows,...), taking ad-
vantage of the Render code already present in the existing X server.

1.1 The Render extension

The original X protocol provides a display model based on traditional boolean op-
erations between source and destination. The Render extension was designed to
enhance this model by adding image compositing operations. Image compositing
was formalized by T. Porter and T. Duff [6], and implemented in the Plan 9 window
system by R. Pike and R. Cox. Keith Packard designed and implemented the Ren-
der extension in XFree86 [3]. Porter-Duff compositing adds a pixel opacity value
called “alpha” to its color attributes. This opacity value can be used to represent
two different effects: translucency and anti-aliasing. The effect of translucency is
created when all pixels of an object have their color computed as a combination of
the intrinsic color of the object and the existing background values. Anti-aliasing is
achieved by taking into account partial occlusion of the background by the bound-
aries of an object.

The Render extension implements new primitives for the display of images and
polygons, as well as the basis for a new font rendering system that takes advantage
of the image compositing features to render anti-aliased text.

Some of the core X applications have been extended to be able to use the X
render extension: for instance xclock in analog mode now draws anti-aliased
and translucent clock hands.

The Render extension was developed initially in XFree86 (now in X.org). It
has been adopted by many commercial X providers too and thus can be assumed
as a standard for modern applications.

1.2 Client-side font rendering

When X was originally designed, more than twenty years ago, it was decided that
text display would be done by the X server. In the traditional X world, fonts are a
server-side resource and applications depend on the fonts available in the server.

This approach had the advantage of limiting the amount of data that text-based
applications have to send to the server, but it also caused lots of frustration among
application developers. PDF or Postscript viewers for instance need to be able to
render fonts that are embedded in the document they are displaying.



Moreover applications need access to more than just bitmaps in the fonts spec-
ifications for precise rendering. Attempts to extend the server-based font rendering
model have all failed to solve all problems.

So, together with the introduction of Render, a radical decision has been taken
to move font rendering from the server to client applications. To achieve this, a
new text-rendering library has been designed; it is now at its second revision: Xft2.
A companion library, fontconfig provides support to all font naming, installation
and caching issues.

Fontconfig can, by the way, be used on a broader spectrum of applications
than just X. It could be used by TEX like publishing applications, printer drivers
and so on. Fontconfig uses XML formatted configuration files, located in the
/etc/fonts directory.

Xft2 is based on the Freetype library. It can render several font formats:
the traditional bitmap-based PCF format from the legacy server-side font system,
Postscript Type 1 and True Type fonts.

Xft2 also provides some enhancements in the font encoding management,
among others it is possible to use UTF-8 encoded text directly with Xft2.

Measurements have shown that the new client-side font rendering scheme has
little to no impact on the overall performance. In many cases, it reduces the num-
ber of round-trips between the application and the server and thus even greatly
improves application startup times.

Like Render, the Xft and fontconfig libraries have been embraced by more
than XFree86 and X.Org. They are now the standard way of displaying text for X
toolkits and applications. The legacy server-side mechanism is obsolete and should
not be used by new developments anymore.

1.3 Composite, Damage, Xfixes extensions and the composite man-
ager

To take the full advantage of the image compositing model provided by the X
render extension, for example to provide translucent windows or to have a window
manager add drop shadows to the windows, there are some bits missing. In the
traditional X model, each application draws its window independently and doesn’t
take care of underlying or overlaying windows.

To be able to implement those eye candies, applications should be redirected
to use off-screen windows, and a specific application, the composite manager, will
work with the window manager and the new Composite extension to compute the
screen’s contents, doing compositing operations to produce translucency, shadows
and anti-aliased polygons and texts.

To make this work, this application needs a bit more information than before
about what is happening on the screen, and it needs this information in an efficient
manner. This is the goal of the the Damage extension: it provides an efficient
way to notify an application of damage done to a region of the screen by another
application.



Figure 1: Composite manager principle: traditional direct on-screen drawing on
the left, vs off-screen drawing & compositing on the right.

Compositing
manager

Clients display directly on
the screen

Clients display off−screen

The Xfixes extension provides a general framework to extend the X protocol
in order to work around some limitations in the core protocol. It currently contains
five fixes. The more important ones allow better manipulation of the application
cursor and export the region objects from the server to the clients.

xcompmgr is a sample composite manager that can be used with any existing
window manager to provide some eye candy. Figure 2 shows the default OpenBSD
desktop enhanced with xcompmgr and anti-aliased fonts in xterm and firefox.

KDE provides its own composite manager, kompmgr, while some window
managers (Luminocity for instance) are integrating this functionality.

1.4 Cairo

Another important evolution in graphical user interfaces is the growth of vector-
based graphics, as opposed to existing bitmap-based graphics. Vectors offer a bet-
ter representation of screen contents, independent of the actual resolution, allow
producing a perfect-looking printed version of an on-screen document, use less
space for storage, and provide a better base for anti-aliased graphics.

With the introduction of the Render extension, X now has the ability of pro-
ducing high-quality graphics based on vector representation.



Figure 2: Adding eye-candy to the default OpenBSD desktop

Cairo1 is a library that implements vector based graphics with support for mul-
tiple output devices. Existing back-ends include X with the Render extension, and
image buffers [4]. Experimental drivers include OpenGL (through the glitz library)
and PDF files.

The Gtk+ toolkit as well as some existing applications already started to base
most of their graphics on the Cairo library.

The OpenGL back-end offers some interesting features: on systems with ac-
celerated OpenGL it provides the toolkits and application with a way to do ac-
celerated 2D graphics that almost completely bypass the X libraries and server.
However, this doesn’t provide a solution for the global desktop compositing accel-
eration mentioned above.

2 Ongoing work

The current Xserver is divided in an architecture independent (DIX) and an archi-
tecture dependent (DDX) layer, which in turn loads the relevant hardware driver for
rendering into the framebuffer. In order to accelerate drawing operations, the hard-
ware drivers offer functions that implement certain operations using the graphics

1http://www.cairographics.org

http://www.cairographics.org


hardware. The traditional interface for this is the Xserver Acceleration Architec-
ture (XAA), which mainly focuses on accelerating core X protocol requests.

In contrast to the features described in the previous section most ongoing and
future developments focus on the Xserver framework. These changes will not af-
fect the programmer’s API, as e.g. the Render and Composite extensions did, so all
applications can immediately benefit from their implementation.

This section describes on-going work, which is available in the X11R6.9 /
X11R7 release: the new 2D acceleration architecture EXA and the modulariza-
tion effort. The EXA architecture is aimed at replacing XAA in drivers, focusing
on accelerating primitives used by modern applications based on the render exten-
sion. The modularization effort will be described from an architectural point of
view.

2.1 A new acceleration architecture for Render: EXA

Without composite manager, the performance of the Render extension is decent on
reasonably recent hardware, that doesn’t even deserve the “fast” qualifier. How-
ever, most of of Render computations are done on the main CPU and take little
advantage of GPU acceleration. Render takes advantage of MMX or SSE instruc-
tions when they’re available, and there have been some work done to add basic
hardware acceleration for Render in the radeon driver.

When the composite manager is involved, things get worse, performance-wise.
Even today’s “fast” hardware can feel slow with compositing enabled. It is thus
mandatory to rework the acceleration framework so that Render and Composite
can be accelerated much better.

The currently used acceleration architecture in Xorg (XAA) is unsuitable for
modern desktop usage. As a result of heavily using the card’s 2D engine to accel-
erate mostly rarely used operations (like pattern fills and Bresenham lines) it in-
validates any backing store that the X server might have on a region. Furthermore
accelerating the Render extension using XAA is rather complicated and severely
limited by its memory manager.

EXA (for EXcellent Architecture or Ex-kaa aXeleration Architecture or what-
ever) aims to extend the life of the venerable XFree86 video drivers by introducing
hooks that they can implement to more efficiently accelerate the X Render exten-
sion: solid fills, blits within screen memory and to and from system memory, and
Porter-Duff compositing and transform operations. It has been implemented by
Zack Rusin in X.org.

A couple of existing drivers have already been converted to use the new
EXA acceleration framework if requested: the i810 driver for Intel graphics card
adapters, the radeon driver for ATI Radeon cards, the sis driver and the i128 drivers.



2.2 Source tree modularization

One of the big tasks in the lastest X release has been a complete rework of the X
build system. The existing source tree, built using the imake build system, was
considered as a big monolithic thing in which most developers found themselves
uncomfortable. The need for global releases, updating all drivers at once every six
month or so doesn’t really fit the market of graphics cards that can produce new
models more often than that timeframe.

Based on the experiences of other software projects, it was decided to switch to
a more modular organization of the project, with more or less independent compo-
nents [8]. This new organization will allow drivers maintainers (or others) to make
independent releases, whenever they are needed.

It was decided that the best tools to manage the build of this new modularized
source tree are the GNU auto-tools. They have an existing large user and developer
base, and thus feel easier to use by the majority of developers. Being maintained
outside of the X.Org project is supposed to lower the maintenance burden on the X
developers which are now free to concentrate on their code.

The existing source tree has been split in several components, and each of them
is composed of independent packages. The main components are:

• xproto which holds all the header files describing the actual X protocol and
extensions. There is one package for the core X protocol and one package
per X extension (Shape, MIT-SHM, Render, etc.),

• libs which holds all the libraries, one package per library (X11, Xext, Xren-
der, etc.),

• data which holds several data files (bitmaps and icons, XKB data files, X
cursors),

• apps which holds the sample applications provided by X.Org (twm, xcalc,
xedit, xlogo, xman, xwd, etc),

• xserver which provides the different X servers (Xorg, Xnest, Xprint, Xvfb),

• drivers which provides the graphics cards drivers, each one in an indepen-
dent package,

• fonts which provides several fonts packages,

• doc for the existing documentation that doesn’t fit a a specific package,

• utils various utilities that help the modular infrastructure, including an auto-
toolized version of imake, for use with third party applications that still
depend on it.



Dependencies and configuration of the new packages is heavily based on the
pkgconfig2 tool.

To make the transition smoother, X11R6.9 and X11R7 share the same source
base, and as far as possible produce the same set of binaries. X11R6.9 is the last
version of the monolithic tree, while X11R7 is the first version based on the new
modular tree. Both releases should be equivalent feature-wise.

Future work will be done in the modularized tree only. Only patches and bug
fixes will be done in the X11R6.9 branch.

3 The future: Xgl

This last section will present the ideas, the rationale and the work already done
to move to a new X server rendering model, based on OpenGL and glitz. This
Xserver, called Xgl3, is mainly developed by David Reveman. Currently it has to
be run on top of a regular Xserver, comparable to Xnest, but first steps have been
made to use Embedded OpenGL (EGL) extensions to make it run stand-alone [7].

3.1 Why use OpenGL

When looking at the current state of the Xserver architecture, several shortcomings
are getting obvious, which we will analyze in detail now:

• XAA does not match current rendering use and is difficult to extend,

• the X server is a mix of high level code (window management etc.) and low
level code (drivers),

• there are little to no ideas how to support modern graphics hardware features
like pixel shaders,

• the driver API is used by Xserver only,

• the driver API is basically 2D only,

• drivers are difficult to maintain outside of main development tree,

• future graphics hardware won’t have a 2D acceleration core any more.

The current acceleration architecture, XAA, has pretty much reached the end
of its productive life, as it is difficult to implement and maintain, and modern appli-
cations don’t use many core X requests for rendering any more. Many new features
like the Render extension have to be implemented and tested for each driver, which
is a tedious and troublesome work.

2http://pkgconfig.freedesktop.org/wiki/
3http://http://www.freedesktop.org/Software/Xgl

http://pkgconfig.freedesktop.org/wiki/
http://http://www.freedesktop.org/Software/Xgl


EXA is one alternative that has already been discussed in the previous section,
but it still has the disadvantage that it keeps the driver code inside the Xserver,
while it would be a worthy goal to have a real driver abstraction layer.

Both acceleration architectures are 2D only APIs, that are used by the Xserver
alone and not by other programs. APIs that are used by only a small number of
programs tend to be less stable and flexible than APIs used by many programs.
While using 2D for a windowing system makes basically sense, there are several
ideas how 3D user interfaces could enhance productivity in the long-term future,
for instance with the project Looking Glass4.

On the X.Org developer’s conference 2005 all attendants agreed that using the
industry standard 3D graphics interface OpenGL is a worthy investigation for a
driver abstraction layer. David Reveman showed an early version of his Xgl proto-
type, which since then has matured and supports OpenGL based implementations
of most important drawing operations in the Xserver. Additional features have been
contributed by the community, for instance Xegl (Dave Airlie, Adam Jackson, John
Smirl) and XVideo (Matthias Hopf).

Basically, Xgl has shown even in its early state, that using OpenGL for the
drawing operations needed for an Xserver is a viable option, which additionally al-
lows for more advanced compositing operations as it will be shown in Subsect. 3.3.
It also gives easy access to modern features of graphics hardware like vertex and
pixel shaders, and as the API continues to evolve we will see future capabilites
exposed as well. Furthermore, hardware vendors use a lot more transistors and
invest more in the design for the 3D core, so it is very likely to be faster than the
2D acceleration core.

The most important advantage is, however, that finally the Xserver has got rid
of its hardware drivers, which can now be maintained outside the Xserver tree. E.g.
Render is accelerated on every graphics hardware with OpenGL drivers, not just
on the ones that actually implement the required acceleration interface. Having
drivers removed from the Xserver core is especially important with future graphics
hardware, which won’t have 2D acceleration any more, and for which only closed-
source OpenGL drivers exist. While vendors can (and do) implement their 2D
drivers themselves as well, having a stable interface abstraction using a standard
API will certainly improve the driver quality.

3.2 The architecture of Xgl

Figure 3 shows an overview over the Xgl architecture. At the moment Xgl is one
additional DDX in the kdrive Xserver, which is an experimental Xserver mostly
written by Keith Packard. After the Xorg modularization is finished, Xgl will
slowly be integrated into the main stream Xorg server as an additional DDX as
well.

OpenGL is still a relatively low-level API, so it made sense to create an abstrac-
4https://lg3d.dev.java.net/

https://lg3d.dev.java.net/


Figure 3: Xgl architecture overview

X11 protocol

Application

Xserver

DDX

glitz

OpenGL
Cmds from Xgl

Framebuffer

tion layer that covers the most common graphics operations. As many X operations
are pixmap oriented, texture handling is of particular importance.

Before working on Xgl David Reveman implemented an OpenGL based back-
end for Cairo [2]. The semantic of this backend, named glitz, closely resembles the
Render protocol, and thus was the perfect abstraction layer for Xgl. Basically, glitz
is an OpenGL image compositing library, which provides Porter-Duff compositing
of images with implicit mask generation for geometric primitives. This includes,
but is not limited to, alpha blending and affine transformations, and it has support
for additional features like convolution filters and color gradients, which are not
needed for Cairo. It also abstracts general texture use and the different sorts of
OpenGL buffers.

There are no software fallbacks in glitz, if the hardware isn’t capable of imple-
menting a certain operation, glitz will just report the failure.

Certain operations of glitz require modern OpenGL features, for instance con-
volution filters or color space conversion and resampling for YUV textures both
need pixel shaders. If the hardware isn’t capable of these operations, a general
software fallback inside glitz would result in poor performance, while the upper
layer can easily implement this particular feature (e.g. color conversion) in soft-
ware in an optimized way.

Applications that want to use OpenGL for drawing have to share the drawing
space with the Xserver. As currently there is no way to share textures or frame-
buffers between applications, they currently have to use indirect rendering, i.e. the
Xserver is doing the actual OpenGL calls it gets via the GLX protocol from the
application. On one hand, this can be significantly slower for applications doing a



lot of memory transfer (video textures or geometry with high primitive count), on
the other hand Xgl is now one of the few X servers capable of doing hardware ac-
celerated indirect rendering, for example for running OpenGL programs remotely,
which isn’t implemented in Xorg yet.

3.3 Composite managers using OpenGL

As already described in Subsect. 1.3, all windows are rendered to off-screen
pixmaps when the Composite extension is active. In the OpenGL case, this means
the Xserver must render to an off-screen framebuffer, which can be provided by
either the pBuffer or the more modern Frame Buffer Object (FBO) extension. Un-
fortunately, pBuffers are not yet widely supported, and implementation of FBOs is
even less common and unstable. In these cases Xgl has to do all rendering to client
windows in software and download the window contents to textures afterwards,
which surprisingly is still quite usable.

Figure 4: Xgl in combination with a composite manager

X11 protocol GLX protocol

Application(s)

DDX

pBuffer / FBO

pBuffer / FBO

pBuffer / FBO

gfx Hardware

Framebuffer

Xserver

Texture binding

MESA_render_texture

Pixmap buffer ID 3D desktop geometry

Texture ID

Mesa / GLX

OpenGL

glitz

Composite Manager

Cmds from CompMgrCmds from Xgl

The pixmaps with the window contents can afterwards be composed us-
ing the Composite extension. An alternative to this is to use GLX to do the
compositing with indirect OpenGL rendering. For this the composite manager
has to be able to bind off-screen pixmaps to textures, which is done with the
GLX_MESA_render_texture extension from Xgl. Figure 4 provides the com-



plete architectural overview over a session using an OpenGL based composite man-
ager.

With this type of composite manager windows can be arbitrarily placed in 3D,
which leads to pretty exciting rendering possibilities (see Fig. 5). Note that the
pixmaps stay on the graphics hardware all the time, and only the geometry to be
rendered has to be transfered from the composite manager to Xgl.

Figure 5: Fancy desktop switching with GLX based composite manager

3.4 Caveats and pitfalls

Currently Xgl is working best when run on top of a regular Xserver, comparable to
Xnest. OpenGL provides neither facilities for creating a displayable framebuffer,
nor for changing display modes. Both issues are addressed by the experimental
EGL_MESA_screen_surface extension, which uses the buffer management
ideas incorporated in Embedded OpenGL (EGL). The extension is close to being
submitted to the Embedded OpenGL ARB for review. Right now there exists an
early implementation in Mesa, named Xegl 5, for the R100 and R200 based Radeon
chips from ATI, but several hardware vendors want to provide all extensions needed
for Xgl to run in the future.

5http://www.freedesktop.org/wiki/Xegl

http://www.freedesktop.org/wiki/Xegl


However, for full functionality, extensions for creating a hardware mouse
pointer, getting monitor information, and setting drivers for different output plugs
are needed as well. These extensions are not specified yet.

One major drawback of Xgl right now is that applications cannot do direct
OpenGL rendering at all. For this an extension for sharing textures between ad-
dress spaces is needed, as the application, Xgl, and the composite manager are all
running in different address spaces. This is the subject of current discussions, but
nothing is specified yet.

During the implementation phase of Xgl, several pitfalls have been encoun-
tered, but for most of them a reasonable solution has been found. First, with many
OpenGL drivers one can easily get namespace collisions, as Xgl needs to be linked
against a software rendering Mesa library for fallback and GLX handling as well as
against the current OpenGL library on the host system. This can be solved by load-
ing the OpenGL backend dynamically, which also allows for the Xegl backend to
be loaded upon availability automatically. Then, frame buffer objects have turned
out to be pretty unstable for many operations, so the code path using pBuffers will
stay around longer than anticipated.

One source for major headaches in the open source community is of course
the lack of open source drivers for modern graphics hardware, which are often
only covered by binary only OpenGL drivers. One notable exception here is Intel,
which has committed itself to providing open source drivers for future chips as
well. Currently, their drivers are not yet equivalent to their competitors with respect
to implemented features, but they are advancing steadily.

3.5 Implementation on BSD systems

Xgl currently runs on any system providing OpenGL, but it is unusable without
hardware acceleration (i.e. without DRI support).

For the longer term, Xegl needs a console driver that provides a graphical mode
with EGL drivers. The first implementations will be done on the Linux framebuffer
driver. NetBSD and OpenBSD share the wscons console driver, on which some
level of support for graphical console is already available. FreeBSD has his own
console driver, syscons, that doesn’t provides a graphical mode yet, as far as we
know.

The integration of these graphical modes with hardware OpenGL acceleration
(and DRI) is required to provide an EGL capable console with support for the
necessary hardware setup extensions.

BSD developers will have to work with Linux DRI developers to make sure
that the direct rendering infrastructure is kept in sync with the Linux DRI with
respect to features like the proposed EGL extensions. A good way to help here
would be to discuss the new extensions on the dri and dri-egl mailing lists so
that no requirements are missed.

In the short term, with these extensions not completely specified, some more
low-level hardware access might be necessary inside the Xserver, and BSD and



X.org should work closely together as soon as more development efforts are con-
centrated upon Xegl.

Conclusion

After a couple of years of relative stagnation in the world of the X window system,
development has resumed, with the goal of providing rich enough functionalities
for desktop environments which want to provide eye-candy on par with other Desk-
top OSs. The wide availability of cheap OpenGL-capable graphics cards makes
such a new project realistic, although the lack of support for open source systems
by most of the hardware vendors darkens the bright sky of this new technology.

References

[1] S. Nickell. Design fu: Xshots. http://www.gnome.org/∼seth/
blog/xshots, March 2005.

[2] P. Nilsson and D. Reveman. Glitz: Hardware Accelerated Image Compositing
Using Opengl. In Usenix 2004 Annual Technical Conference, Freenix Track,
pages 29–40, June 2004.

[3] K. Packard. Design and Implementation of the X Rendering Extension. In
Usenix Technical Conference, Boston, June 2001.

[4] K. Packard. Cairo status. http://keithp.com/∼keithp/talks/
cairo-exdc2005/, June 2005. European X.Org developpers Meeting,
Karlsruhe.

[5] K. Packard. X Status Report. http://keithp.com/∼keithp/talks/
x-rearch-lca2005, April 2005. Linux.conf.au.

[6] T. Porter and T. Duff. Compositing Digital Images. Computer Graphics,
18(3):253–259, July 1984.

[7] J. Smirl. The state of linux graphics. http://www.freedesktop.org/
∼jonsmirl/graphics.html, September 2005.

[8] D. Stone. X.org modularization. ”Where to from here?”. http://
people.freedesktop.org/∼daniels/exdctalk/, June 2005. Eu-
ropean X.Org developpers Meeting, Karlsruhe.

http://www.gnome.org/~seth/blog/xshots
http://www.gnome.org/~seth/blog/xshots
http://keithp.com/~keithp/talks/cairo-exdc2005/
http://keithp.com/~keithp/talks/cairo-exdc2005/
http://keithp.com/~keithp/talks/x-rearch-lca2005
http://keithp.com/~keithp/talks/x-rearch-lca2005
http://www.freedesktop.org/~jonsmirl/graphics.html
http://www.freedesktop.org/~jonsmirl/graphics.html
http://people.freedesktop.org/~daniels/exdctalk/
http://people.freedesktop.org/~daniels/exdctalk/

	Already available new features
	The Render extension
	Client-side font rendering
	Composite, Damage, Xfixes extensions and the composite manager
	Cairo

	Ongoing work
	A new acceleration architecture for Render: EXA
	Source tree modularization

	The future: Xgl
	Why use OpenGL
	The architecture of Xgl
	Composite managers using OpenGL
	Caveats and pitfalls
	Implementation on BSD systems


