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Abstract
The next generation thread library for OpenBSD will be rthreads.  Based on the rfork() 

system call, rthreads improve the performance, robustness, and scalability of OpenBSD's thread 
support.  In contrast to other recent threading models introduced to BSD systems, rthreads is not 
based on scheduler activations.

The existing userland pthreads has carried us a long way but it's been showing its age 
recently.  As more applications place more demanding requirements on the thread library its 
shortcomings become more apparent.  This paper will explain these problems, highlight how 
rthreads resolve them, and then continue with an overview of the rthreads implementation.

Threads
Briefly, threading opens up a new programming model for a developer to use, instead of 

asynchronous I/O or an event loop.  While POSIX defines an API for threads, called pthreads, 
several implementations are possible.  The core of any threading implementation needs to 
provide two fundamentals, concurrency and synchronization.  Concurrency allows a programm 
to accomplish multiple tasks, while providing the programmer with an abstraction that only one 
task need be addressed at a time.  Synchronization permits multiple threads to interact in an 
orderly manner.

Userland Threads
One way to implement threads is entirely as a userspace library.  The userlandapproach 

has two advantes.  First, it works on operating systems which don't natively support threads.  
Second, for some tasks, it offers good performance.  By not involving the kernel, syscall 
overhead is avoided.

By the same token, however, the kernel is unaware of the thread library's intentions.  
This means that it is subject to inoppurtune scheduling by the kernel.  There's no true 
concurrency, but the only illusion of concurrency, achieved by replacing potentially blocking 
I/O calls with nonblocking calls.  In practice, however, nonblocking I/O has a tendency to 
block, notably when reading from the filesystem.  select() and poll() will always indicate that 
data is available, even when it isn't in the buffer cache.  If one thread blocks waiting for data 
from disk, all threads in the same process block.  This drawback severely handicaps the ability 
of any userland thread library to provide concurrency.

Kernel Threads and Scheduler Activations
To alleviate these shortcoming, support for threads was added to many systems' kernels.  

Now, the kernel can schedule another thread from the same process to run while one thread 
waits on disk, and a third thread can be running on a different CPU.  A userland library still 
exists to provide the API, but many tasks, such as thread creation or synchronization, are 
delegated to the kernel through new syscalls.

The next stage of evolution for many thread implementations was a technique called 
Scheduler Activations.  Originally developed by Anderson, et al, SA expands the 
userland/kernel thread interface to include a message passing system for all scheduler events.  
Instead of the kernel scheduler selecting a new thread to run when the currently running thread 
blocks, a message is sent to the library which then performs the task switch.  SA were designed 



to improve the performace of operations like thread creation by avoiding a syscall, and increase 
the flexibility of the userland scheduler, by placing it in full control of thread scheduling.

OpenBSD and Threads
At the current time, the only supported thread model for OpenBSD is a userland library.  

It suffers from the typical set of problems.  Anyone who has used a threaded media player on 
OpenBSD has likely discovered for themselves that when one thread blocks, they all block.

The introduction of SMP support for the i386 and amd64 architectures also highlighted 
the fact the because libpthread only utilizes one process, and therefore one scheduling entity, it 
could not take advantage of multiple CPUs.  Several applications such as MySQL are written to 
utilize threads in an attempt to improve performance.

Rthreads
To address these issues, it was clear that kernel support for threads was required.  

Instead of an approach based on scheduler activations, implementations of which can be found 
in both FreeBSD and NetBSD, a direct 1:1 mapping of user threads to kernel threads was 
selected.  The already existing rfork() system call provides a means to create multiple processes 
that share an address space - in effect, threads.  In some ways, this is similar to the 
LinuxThreads library, particularly the FreeBSD port of which used rfork() as well.  However, 
LinuxThreads relied on an extra control thread, and the kernel was unable to properly 
distinguish threads from processes.

Kernel Modifications
rfork() typically creates full fledged processes, not threads.  Building a thread library 

directly on rfork() with no additional kernel support is possible; however, this leads to artifacts 
such as every thread appearing independently in the output of utilities such as ps and top.  A 
new flag to rfork() was added, RFORK_THREAD, to indicate to the kernel that the new process 
should be considered a part of the parent.  A linked list is maintained of threads for each 
process, similarly to the process sibling list.  No separate thread structure has been created in 
the kernel.  Threads are just processes with a special flag set.

All threads created so contain a thread parent pointer, which points to the struct proc for 
the process.  The thread parent pointer for non-threaded processes is initialized to point back to 
itself.  In this way, any access to data which particularly needs to address the process can be 
done through the thread parent pointer.

The advantage of this approach is that the kernel was made "thread-aware" with only 
changes to a few files - those dealing with process creation and exiting.  When a thread of a 
process calls exit(), the kernel iterates over the list of sibling threads and also calls exit() for 
them.  A new syscall was added to allow a single thread to exit.  No other changes were initially 
necessary.  As time goes on, more changes have been and will be made to more naturally 
integrate thread awareness into the kernel.

One disadvantage of the approach is that some of the struct proc fields are redundant for 
a thread.  Future work will consider the feasibility of restructuring.  In the mean time, the 
lossage even for thousands of threads measures only a few dozen KB.

In contrast to the schedular activation approach, the direct 1:1 mapping simplifies 
scheduling.  Under SA, when a thread blocks in the kernel, a complex dance of interactions and 
upcalls is performed to find a new thread.  This operation also occurs whenever a timeslice 
expires.  Because an rthread is implemented as just another process in the kernel, nothing 
special need happen when it blocks.  A new process is selected to run and the kernel performs 
its usual context switch operation.



Syscalls
The sys_rfork() system call is not new, but a modified version of sys_exit() needed to be 

provided so that one thread could exit by itself.  The new syscall, sys_threxit(), simply calls 
exit1() with a special flag set to indicate only this thread intends to stop.  Other threads may 
wait for an exiting thread using wait() like any other process. sys_getthrid() is the equivalent of 
sys_getpid(), although it does not map all threads to the parent process's pid.  To support 
voluntary yielding, sys_yield() was added.

In order to support userland mutexes and semaphores, it was necessary to add two 
additional syscalls, sys_thrsleep(long ident, int timeout, void *lock) and sys_thrwakeup(long 
ident).  These functions export the tsleep() and wakeup() kernel functions to userland.  
sys_thrsleep() is used to inform the kernel that the current thread wants to cease execution for 
an extended period (extended really only meaning more than a clock tick).  The ident value is 
entered into a list of idents for the current process, and then tsleep() is called on the address of 
the list node.  This enables the userland process to sleep on any address, much as a process on 
the kernel can block waiting on any address, while assuring that every process has a unique 
ident space and without requiring the kernel to interpret userland data.  sys_thrwakeup() finds 
the node with the matching ident, then calls wakeup() on its address.  A timeout may be 
specified to sys_thrsleep() to control the maximum sleep time.  The final address is intended to 
be a spinlock currently held by the calling thread.  The kernel will release just before calling 
tsleep().  It can be used to ensure that a second thread doesn't call sys_thrwakeup() before the 
first thread is fully asleep.

Library Code

Binary Compatible
The rthreads library is binary compatible with the pthreads library it replaces.  The 

design of the original pthreads library was such that all exposed types are really pointers to 
opaque types.  This means that compiled programs are agnostic to the size and organization of 
such types.

MD Code
The majority of rthreads code is machinde independent.  On a per architecture basis, 

pieces of machine dependent code must be provided.  The first is the rfork_thread(int flags, void 
*stack, void (*fn)(void *), void *arg) function.  This function calls rfork(flags) and returns the 
thread id of the child to the parent.  The child does not return.  Instead, it has its stack pointer 
adjusted and jumps immediately to fn, passing it arg.

The second function is _atomic_lock(_spinlock_lock_t *lock) which performs an atomic 
compare and swap operation.  This function is used to implement the userland spinlock 
functions.

Synchronization
pthreads includes several types of synchronization operations and data structures, such 

as simple mutexes, reader-writer locks, and condition variables.  In rthreads, these are all 
implemented as layers on top of semaphores.

The semaphores are implemented using a combination of userland and kernel code.  
Spinlocks are used to protect the counter that indicates whether the semaphore is available.  In 
the simple acquistion case, the count is adjusted and the spinlock released.  In other cases, the 
thread must block until the semaphore becomes available.  Blocking requires finding a new 
thread to schedule, so on rthreads a syscall is involved to inform the kernel.  The blocking 



thread calls sys_thrsleep(), passing it both the address of the semaphore and the address of the 
semaphore's spinlock.  The kernel then atomically releases the spinlock, and finds a new 
process to run or enters the idle loop.

The first thread will remain waiting on the kernel's wait list until a second process 
increases the semaphore count.  If the current semaphore count is 0, the thread calls 
sys_thrwakeup().

Scheduling
One of the advantages often credited to SA is that the scheduling of threads is under 

control of the process and not subject to the kernel. Unfortunately, this flexibility comes at the 
cost of considerable complexity.  At present, librthread has only limited control over the kernel 
scheduler.  Ideally, some new syscalls can be added to expose more control to userland without 
undue complexity.  Otherwise, it's possible for a running thread to yield the CPU at designated 
sequence points.

Future Work
Quite simply, signal handling is one the most complicated aspects of threads to get right.  

I'd also like to explore re-using kernel threads to improve performance, instead of calling 
threxit() immediately when finished.  Some paradigms create a new thread to acomplish every 
small task and eliminating two or three syscalls will likely be a remarkable improvement.

Conclusion
The majority of the code and complexity with the old pthreads code dealt with trying to 

fake nonblocking I/O and scheduling.  The requirement to perform the first has been eliminiated 
entirely, and the second task is now the responsiblity of the kernel.  For this reason, rthreads is 
implemented using only a fraction of the amount of code previously required.  rthreads is both a 
better and simpler replacement.

Thanks
Of course, any discussion of libpthread needs to mention John Birrel, its original author, 

and all the other FreeBSD developers who worked on it.  All the OpenBSD developers, 
especially anyone who has worked on improving libpthread and who now face adapting many 
of those changes to librthread.
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