
Debug Packages in OpenBSD

Marc Espie <espie@openbsd.org>, <espie@lse.epita.fr>

Epita Research and
Development Laboratory

September 18, 2021

1 / 32

The origins

Like most things in OpenBSD, it started at a hackathon,
the p2k19 hackathon, organized by Paul Irofti in Bucarest.
... and the original idea was Paul’s as well:
"hey, there’s this command we can use to split off the debug info from an
executable. How about we make some debug packages."

2 / 32

Specifically

1 objcopy --only-keep-debug program .debug/program.dbg
2 strip -d program
3 objcopy --add-gnu-debug-link=program .debug/program.dbg

3 / 32

The end

And that’s about all folks!
Wait what ?
Of course there are fun details to take care of!

4 / 32

A more elaborate plan

Add the debug package to "visible packages" ?
This requires a lot of changes, so let’s not
Debug packages should be "fantom packages that don’t really exist"
As for update use the exact same update signature as the normal package

5 / 32

Rapid development

At that point, make package is more or less make package-cookies

so we just need to make extra cookies for the debug packages
Naming convention: add debug- to the front (to avoid cluttering the normal list)
Do the debug part manually at first: for each DEBUG_FILES, we apply the magic
objcopy transformation
... and write the packing-list (manifest) manually, at first
This allowed us to check that egdb was happy with it

6 / 32

Rapid development II

generation of DEBUG_PACKAGES is triggered by the presence of DEBUG_FILES
we add extra DEBUG_CONFIGURE_ARGS to configure
... show that to crash-test developers (we’re at a hackathon, remember ?). Many
thanks to all the folks who tested !

7 / 32

Very fast turn-around

Turns out most people are interested in debug packages !
... so I got a lot of developers to test things and offer suggestions !

8 / 32

Some code I

1 #[...]
2

3 DEBUG_PACKAGES ?=
4 DEBUG_FILES ?=
5 DEBUG_CONFIGURE_ARGS ?=
6

7 .for _S in ${MULTI_PACKAGES}
8 _PKGFILE${_S} = ${FULLPKGNAME${_S}}.tgz
9 _DBG_PKGFILE${_S} = debug-${_PKGFILE${_S}}

10 . if ${PKG_ARCH${_S}} == "*" && ${NO_ARCH} != ${MACHINE_ARCH}/all
11 _PACKAGE_COOKIE${_S} = ${PACKAGE_REPOSITORY}/${NO_ARCH}/${_PKGFILE${_S}}
12 . else
13 _PACKAGE_COOKIE${_S} = ${PACKAGE_REPOSITORY}/${MACHINE_ARCH}/all/${_PKGFILE${_S}}
14 _DBG_PACKAGE_COOKIE${_S} = ${PACKAGE_REPOSITORY}/${MACHINE_ARCH}/all/${_DBG_PKGFILE${_S}}
15 . endif
16 .endfor
17

9 / 32

Some code II

18 #[...]
19 .if !empty(DEBUG_PACKAGES) || !empty(DEBUG_FILES)
20 INSTALL_STRIP =
21 DEBUG_FLAGS = -g
22 CONFIGURE_ARGS += ${DEBUG_CONFIGURE_ARGS}
23 .else
24 DEBUG_FLAGS =
25 .endif
26

27 .for _S in ${MULTI_PACKAGES}
28 PKG_ARGS${_S} += -A'${PKG_ARCH${_S}}'
29

30 _create_pkg${_S} = \
31 tmp=${_TMP_REPO}${_PKGFILE${_S}} pkgname=${_PKGFILE${_S}} && \
32 ${_PBUILD} ${_PKG_CREATE} -DPORTSDIR="${PORTSDIR}" \
33 $$deps ${PKG_ARGS${_S}} $$tmp && \
34 ${_check_lib_depends} $$tmp && \

10 / 32

Some code III

35 ${_register_plist${_S}} $$tmp && \
36 ${_checksum_package}
37

38 _move_tmp_pkg${_S} = ${_PBUILD} mv ${_TMP_REPO}${_PKGFILE${_S}} ${_PACKAGE_COOKIE${_S}}
39 _tmp_pkg${_S} = ${_TMP_REPO}${_PKGFILE${_S}}
40

41 . if ${DEBUG_PACKAGES:M${_S}}
42 _DBG_PKG_ARGS${_S} := ${PKG_ARGS${_S}}
43 _DBG_PKG_ARGS${_S} += -P${FULLPKGPATH${_S}}:${FULLPKGNAME${_S}}:${FULLPKGNAME${_S}}
44 _DBG_PKG_ARGS${_S} += -DCOMMENT="debug info for ${FULLPKGNAME${_S}}"
45 _DBG_PKG_ARGS${_S} += -d"-debug info for ${FULLPKGNAME${_S}}"
46 _DBG_PKG_ARGS${_S} += -DFULLPKGPATH=debug/${FULLPKGPATH${_S}}
47 _DBG_PKG_ARGS${_S} += -f ${PLIST${_S}}-debug
48 _create_pkg${_S} += && \
49 tmp=${_TMP_REPO}${_DBG_PKGFILE${_S}} pkgname=${_DBG_PKGFILE${_S}} && \
50 ${_PBUILD} ${_PKG_CREATE} -DPORTSDIR="${PORTSDIR}" \
51 $$deps ${_DBG_PKG_ARGS${_S}} $$tmp && \

11 / 32

Some code IV

52 ${_check_lib_depends} $$tmp && \
53 ${_register_plist${_S}} $$tmp && \
54 ${_checksum_package}
55 _move_tmp_pkg${_S} += && ${_PBUILD} mv ${_TMP_REPO}${_DBG_PKGFILE${_S}} ${_DBG_PACKAGE_COOKIE${_S}}
56 _tmp_pkg${_S} += ${_TMP_REPO}${_DBG_PKGFILE${_S}}
57 . endif
58

59 #[...]
60

61 _copy_debug_info:
62 .for P in ${DEBUG_FILES:N*.a}
63 @dbgpath=${PREFIX}/${P:H}/.debug; \
64 dbginfo=$${dbgpath}/${P:T}.dbg; \
65 p=${PREFIX}/$P; \
66 ${INSTALL_DATA_DIR} $${dbgpath}; \
67 echo "> move debug info from $$p into $${dbginfo}"; \
68 objcopy --only-keep-debug $$p $${dbginfo}; \

12 / 32

Some code V

69 objcopy --strip-debug $$p; \
70 objcopy --add-gnu-debuglink=$${dbginfo} $$p
71 .endfor
72 .for P in ${DEBUG_FILES:M*.a}
73 @dbgpath=${PREFIX}/${P:H}/.debug; \
74 dbginfo=$${dbgpath}/${P:T}; \
75 p=${PREFIX}/$P; \
76 ${INSTALL_DATA_DIR} $${dbgpath}; \
77 echo "> copy debug info from $$p into $${dbginfo}"; \
78 cp $$p $${dbginfo}; \
79 strip $$p
80 .endfor

13 / 32

Reuse of previous work

Introducing build-debug-info

This just reuses an existing framework
we read existing packing-lists in update-plist

let’s just do the same to create the debug-plists
... except we generate temporary information
and generate a DEBUG_FILES equivalent dynamically

14 / 32

Reuse II

update-plist is fully OO
The "parsing the existing lists part" is just common code with pkg_create

There’s a common class that parses parameters, with a derived subclass for
update-plist

This class requires very few changes to generate a build-debug-info tool

15 / 32

Clunky clunky

1 cat ${_WRKDEBUG}/debug-info| \
2 while read dbgpath p dbginfo; do \
3 ${INSTALL_DATA_DIR} $${dbgpath}; \
4 echo "> copy debug info from $$p into $${dbginfo}"; \
5 case $$p in *.a) \
6 cp $$p $${dbginfo}; \
7 strip $$p;; \
8 *) \
9 objcopy --only-keep-debug $$p $${dbginfo}; \

10 objcopy --strip-debug $$p; \
11 objcopy --add-gnu-debuglink=$${dbginfo} $$p; \
12 esac; done

16 / 32

Feedback from friends

Stuart
debug packages might be big
... so we do them opt-in
... also make this arch-dependent: amd64 first then we’ll figure out other
architectures
32 bit arches are likely to be out in the cold

Antoine
Hey, it doesn’t work with some python packages!
That’s because of hardlinks.
Obviously, if you have two links to the same binary,
objcopy --split-debug-info will only work once !

17 / 32

A better picture

18 / 32

All about links

nothing to do with most binaries
however the debug link does not have a path
so we still need to do something for different directories
most annoying part was tests!

19 / 32

Second issue (a simpler one)

we’re actually in multi-packages land...
So we set DEBUG_PACKAGES to the subpackages for which we want debug packages.
This will get trimmed automatically depending on architecture (exactly like for
"normal" multi-packages: don’t deal with stuff that’s NOT_FOR_ARCHS. and don’t
do debug for arch independent stuff: a subpackage that does not contain binaries
does NOT need a debug-package

20 / 32

How it ends up

we set up MULTI_PACKAGES = -a -b -c bsd.port.arch.mk generates
BUILD_PACKAGES by possibly trimming it according to pseudo-flavors and
NOT_FOR_ARCHS/ONLY_FOR_ARCHS.
so we just need to set DEBUG_PACKAGES = ${BUILD_PACKAGES}.
A small piece of code in bsd.port.mk will strip PKG_ARCH=*

21 / 32

Next problem

When we update a port, we need to run update-plist, but in order to do that, we need
for fake to finish...
Current "wedge" for debug packages looks like this:

set DEBUG_PACKAGES=${BUILD_PACKAGES} (trimmed through bsd.port.arch.mk)
trim it through PKG_ARCH != *

if it’s not empty use possible DEBUG_CONFIGURE_ARGS during configure, build as
usual
at the end of "fake", we run an extra _copy_debug_info target
that target runs build_debug_info
... and then either links .dbg or create .dbg through objcopy

make package iterates over normal subpackage with pkg_create... if there is a
debug-subpackage, we also call pkg_create on the sly for the debug subpackage

so make fake can’t fail, we just warn in case of issues.

22 / 32

The solution

We may run build-debug-info during make package

but it doesn’t extract the debugging information, it creates a Makefile that does
that !
so make package depends on that Makefile, and it depend on fake being finished.
and each file is handled independently to extract debug info just once
Hindsight is 20/20. It was obvious we might debug-info extraction to be applied
several times, so doing that with real dependencies solves our problem.

23 / 32

For instance I

1 # Makefile generated by build-debug-info $OpenBSD: build-debug-info,v 1.38 2020/12/04 15:04:52 sthen Exp $
2 # No serviceable parts
3 # Intended to run under the stage area after cd ${WRKINST}
4

5 OBJCOPY_RULE = ${INSTALL_DATA_DIR} ${@D} && \
6 perm=`stat -f "%p" $?` && chmod u+rw $? && \
7 echo "> Extracting debug info from $?" && \
8 if readelf 2>/dev/null -wi $?|cmp -s /dev/null -; then \
9 echo "Warning: no debug-info in $?"; \

10 fi && \
11 objcopy --only-keep-debug $? $@ && \
12 ${DWZ} $@ && \
13 strip -d $? && \
14 objcopy --add-gnu-debuglink=$@ $? && \
15 chmod $$perm $? && \
16 touch $@
17

24 / 32

For instance II

18 LINK_RULE = ${INSTALL_DATA_DIR} ${@D} && \
19 echo "> Link debug info from $? to $@" && ln $? $@
20

21 all:
22 .PHONY: all
23

24 all: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdcat.dbg
25 /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdcat.dbg: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/bsdcat
26 @${OBJCOPY_RULE}
27

28 all: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdcpio.dbg
29 /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdcpio.dbg: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/bsdcpio
30 @${OBJCOPY_RULE}
31

32 all: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdtar.dbg
33 /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/.debug/bsdtar.dbg: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/bin/bsdtar
34 @${OBJCOPY_RULE}

25 / 32

For instance III

35

36 all: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/lib/.debug/libarchive.so.11.2.dbg
37 /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/lib/.debug/libarchive.so.11.2.dbg: /vide/build/usr/ports/pobj/libarchive-3.5.1/fake-amd64/usr/local/lib/libarchive.so.11.2
38 @${OBJCOPY_RULE}

26 / 32

Workflow for people

Old process

run fake (which generates SOME debug info which may or may not be accurate).
Run update-plist (which might invalidate the meta info necessary for which file to
debug),
so needs to make clean=fake before packaging.

New process

make fake (no debug info involved)
update-plist
create debug info
and package.

27 / 32

If we did the debug info by accident, we can run it again and again WITHOUT needing
to wipe the fake stage, because it’s a Makefile !
(actually _copy-debug-info is re-run doing EACH packaging step: it depends on the
fake dir being up-to-date and the generated debug Makefile, and it just rechecks all
.dbg files are accounted for)
Since the debug Makefile doesn’t have "simple" dependencies, we just wipe it at the
end of update-plist.

28 / 32

Highlights

And here is the full process in a nutshell. Highlights:
need to declare which packages we want debug stuff for (so that the repo doesn’t
grow too much).
declaring is (mostly) DEBUG_PACKAGES = ${BUILD_PACKAGES} get stripped
automatically)
configuring will automatically handle INSTALL_STRIP/DEBUG in most cases, plus
adding DEBUG_CONFIGURE_ARGS to CONFIGURE_ARGS. In a few ports, a bit more
glue will be needed.
the whole magic happens after fake... we use the existing packing-lists
the fake data is used to generate plists for the debug-packages AND run objcopy
the debug packages are "fantom" packages that depend on the main package, no
independent registration.

29 / 32

DWZ

dwz (dwarf compress), imported and maintained by bcallah@, in order to make the
debug packages a bit smaller.
So every debug package BUILD_DEPENDS on devel/dwz, except for devel/dwz
which uses the just build binary (and for mozilla which has weird debug info ??? or
dwz which is subtly broken)
Turns out to be a really nice stress-test for debug-info !

30 / 32

The pkg_add side

initial usage was simply to manually pkg_add debug-* stuff

run into a bug on an installed package, and find out the debugging package is
obsolete: debug info has a kind of signature which must match the debugging
binary EXACTLY.

31 / 32

Two ways around that

add an option (-d) to pkg_add to (silently/automatically) install/update debug
packages when available (a bit of a size hog)
configure pkg_add through an env variable to keep a stash of debug packages for
installed packages (DEBUG_PKG_CACHE), so that you always have an up-to-date
debug package.

32 / 32

open issues

some frameworks make things more complicated (cmake!)
how do the debug options change things ?
what platforms want debug packages

33 / 32

Questions

That’s about all. Many thanks to my fellow developers !

34 / 32

