
bio and sensors in OpenBSD

Marco Peereboom <marco@openbsd.org> David Gwynne <dlg@openbsd.org>

OpenCON 2006

introduction

- what is RAID management?
- what are sensors?
- why do we care?
- what's the problem?
- what's the solution?

what is RAID management?

- the ability to see the configuration of RAID sets
- the ability to detect failures in RAID volumes and components
- the ability to fix RAID sets
- extra bits for people who like to push buttons

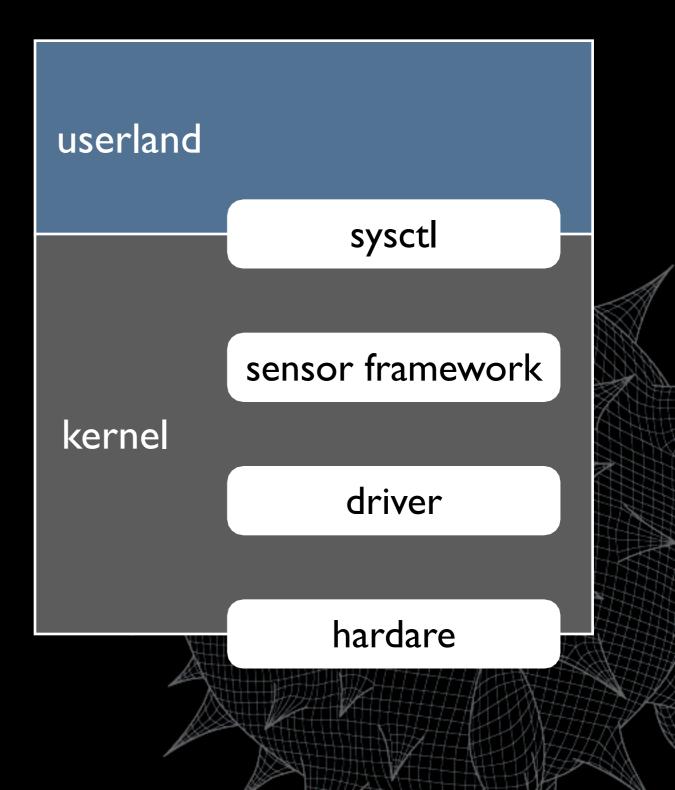
what are sensors?

- sensors are anything that provides environmental information about your system
- anything that can tell you about the status of your components, eg:
 - cpu temp and voltage
 - ambient temp
 - power supply redundancy

why do we care?

- computers are now built with redundancy so they can withstand failures of their parts
- environmental readings aid in predicting potential future failures
- we can replace the part or shutdown the machine before component failure or permanent damage to the machine

what's the problem?


- every vendor implements tools to manage raid devices and sensors differently
- these tools have evolved over the years into extremely complex and brittle stacks
- open source operating systems seem merely content to boot on the hardware and let the vendor provide the monitoring
- every implementation looks different

what's the solution?

- take some responsibility and make our own
- more specifically:
 - define your own stack and interfaces
 - get the specification for the hardware so you can fit drivers into the interfaces
 - write the code
 - give talks about it

sensors in depth

- sensors are a stack made up of:
 - the hardware
 - the driver
 - the sensor framework
 - sysctl
- all the smarts are in the sensor framework

sensor hardware

- we've found a lot of sensors
 - SCSI enclosures: ses, safte
 - system management controllers: ipmi, esm
 - I2C and SMBus devices: adc, admcts, admlc, amdtemp, admtm, admtmp, admtt, adt, asbtm, asms, fcu, glenv, Imenv, Imtemp, maxds, maxtmp, pcfadc, tsl, ...

sensor drivers

- the driver is responsible for retrieving, interpreting, and normalising the sensor values off the hardware
- the driver allocates a sensor struct, fills it in, and adds it to the sensor-framework
- it periodically updates the sensor values and status
 - the driver can do its own updates
 - or if it needs process context (eg, to sleep or do DMA) it can register a task with the sensor framework

the sensor framework

- maintains the list of sensors as drivers add and remove entries
- provides a single place for sysctl to query all drivers
- provides a single kernel thread for all sensors to update out of via callbacks

sysct

- the sysctl interface is where userland and kernel meet
- when the kernel is queried it walks the list of sensors and copies the requested sensors struct out to userland
- decouples updates and userland so reads will not block

sensors in userland

- userland gets the kernels sensor information via sysctl(3)
- sysctl(8) fetches and translates this info into human readable output
- sensorsd(8) tries to do something smart with it

what a sensor looks like

struct sensor {
 SLIST_ENTRY(sensor)
 char
 char
 struct timeval
 int64_t
 enum sensor_type
 enum sensor_status
 int
 int

list; desc[32]; device[16]; tv; value; type; status; num; flags;

};

sensors in the kernel

void sensor_add(struct sensor *s); void sensor_del(struct sensor *s); struct sensor *sensor_get(int id);

sensors via sysctl(3)

int mib[] = { CTL_HW, HW_SENSORS, 0 };
struct sensor s;
size_t slen = sizeof(s);

sysctl(mib, sizeof(mib)/sizeof(mib[0]), &s, &slen, NULL, 0);

sensors via sysctl(8)

sysctl hw.sensors

hw.sensors.0=ipmi0, Phys. Security, On, CRITICAL hw.sensors.1=ipmi0, Baseboard 1.5V, 1.51 V DC, OK hw.sensors.2=ipmi0, Baseboard 2.5V, 2.51 V DC, OK hw.sensors.3=ipmi0, Baseboard 3.3V, 3.34 V DC, OK hw.sensors.4=ipmi0, Baseboard 3.3Vsb, 3.49 V DC, OK hw.sensors.5=ipmi0, Baseboard 5V, 5.10 V DC, OK hw.sensors.6=ipmi0, Baseboard 12V, 12.10 V DC, OK hw.sensors.7=ipmi0, Baseboard -12V, -12.30 V DC, OK hw.sensors.8=ipmi0, Baseboard -12V, -12.30 V DC, OK hw.sensors.9=ipmi0, Processor VRM, 1.47 V DC, OK hw.sensors.10=ipmi0, Baseboard Temp, 30.00 degC, OK hw.sensors.11=ipmi0, Processor 1 Temp, 36.00 degC, OK hw.sensors.13=ipmi0, Baseboard Fan 1, 1980 RPM, OK

sensorsd

- sensorsd polls the sensor values by periodically retrieving them via sysctl
- sensorsd can react upon threshold values as configured in /etc/sensorsd.conf, eg, if the ambient temperature value exceeds 70 degC then page the administrator
- currently awful, it is evolving

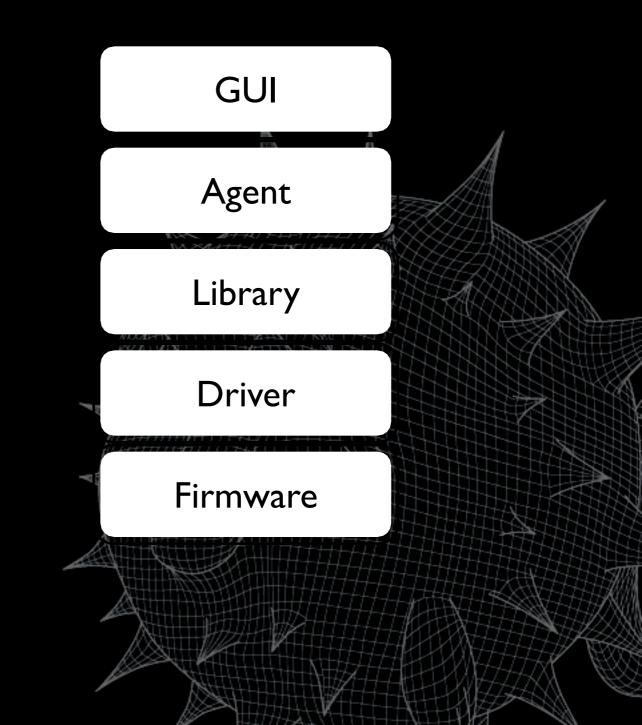
sensors summary

- sensors are not magical, they're generally very simple, ie, read a value off hardware and stash it in a struct
- the same framework is enabled on all our archs
- sensors are easy (and fun, like blinkenlights) to implement and use

RAID management

- similar to sensors in that we want to see the status of redundant components
- different to sensors in that we need to do more, eg, replace disks and add spares
- hard to do because vendors don't want to give up documentation
- vendors do provide tools, but...

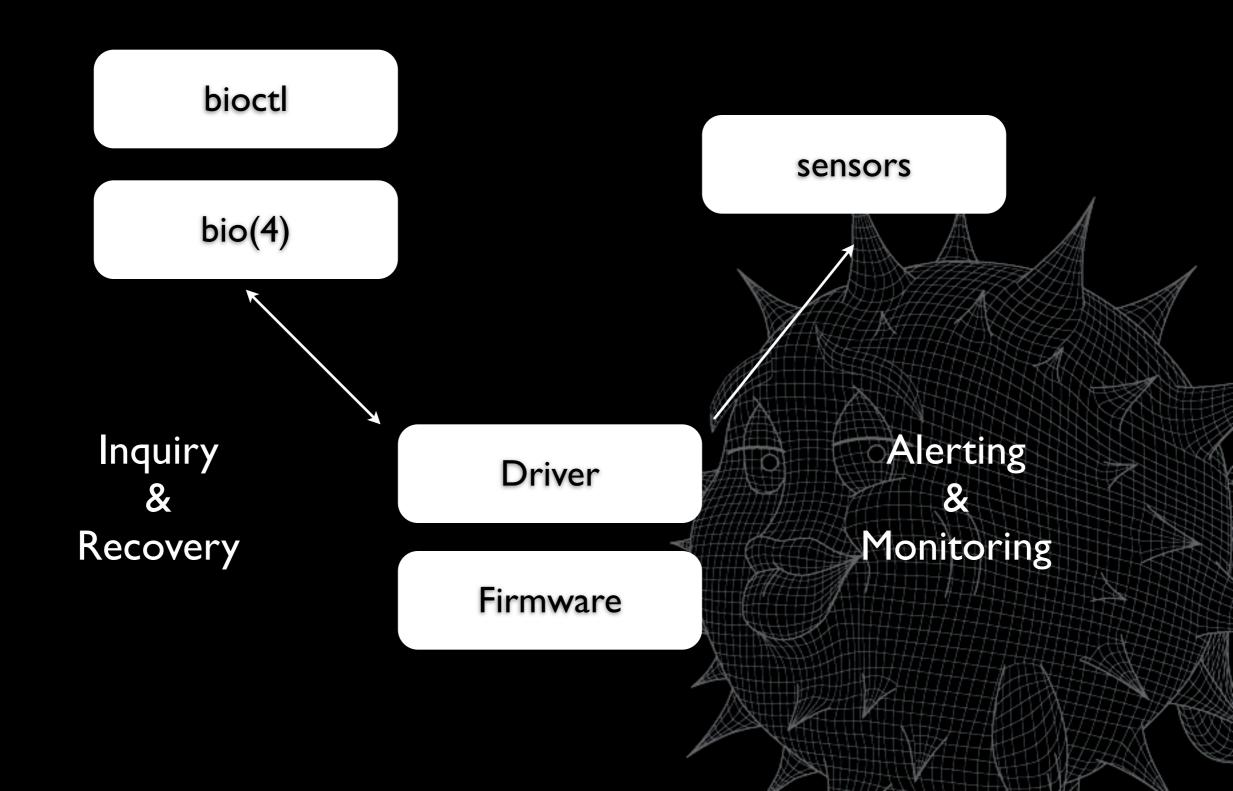
vendor tools


- binary only, and limited to specific archs (i386, and whatever can run i386 binaries)
- requires us to open big holes in the kernel for userland to talk directly to the hardware (and hasn't that worked so well for X?)
- provided under incompatible licenses, so can't be shipped in the base system
- therefore not supported on OpenBSD

RAID documentation

- attempts to obtain documentation have failed for several reasons
 - Vendors do not posses current and accurate documentation
 - Vendors do not want to support a product beyond regular channels
 - Vendors think their hardware is special

typical RAID management stack


- typically developed by different teams resulting in large amounts of abstraction
- the abstraction leads to bugs (more code always has more places for bugs to hide)
- different vendors have their own stacks

RAID management essentials

- production machines do not need complex tool chains for RAID management. They essentially only need the following feature set:
 - alerts
 - monitoring
 - inquiry
 - recovery operations

OpenBSD RAID management

bio(4)

- technically it is a pseudo device that tunnels ioctls for devices that don't have their own /dev entry
- drivers have to register with bio to be accessible via bio
- we define some ioctls that raid controllers can implement that is accessable via bio

bio inside drivers

- In order to support bio drivers need to support some of the following ioctls:
 - BIOCINQ, BIOCDISK, BIOCVOL for enumeration of volumes and disks
 - BIOCSETSTATE for adding spares
 - BIOCALARM, BIOCBLINK for finding the computer and the disks
- need a pass thru bus for access to phys bus

bioctl

- bioctl is the userland half of our RAID management tool
- intended as the ifconfig of RAID controllers
- it translates the bio ioctls into something humans can grok

bioctl

- inquiry functions:
 - display RAID setup and status
 - blink enclosure slot so you can find it
- recovery functions:
 - alarm management
 - create hot-spare
 - rebuild to hot-spare

bioctl in action

<pre># bioctl ami0</pre>						
Volume Status	Size	Device				
ami0 0 Online	366372454400	sd0	RAID5			1
0 Online	73403465728	0:0.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
1 Online	73403465728	0:2.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
2 Online	73403465728	0:4.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SC4</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SC4	A JNZ6>
3 Online	73403465728	0:8.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
4 Online	73403465728	1:10.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
5 Online	73403465728	1:12.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
ami0 1 Online	366372454400	sd1	RAID5			
0 Online	73403465728	0:1.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
1 Online	73403465728	0:3.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
2 Online	73403465728	0:5.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
3 Online	73403465728	1:9.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
4 Online	73403465728	1:11.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
5 Online	73403465728	1:13.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
ami0 2 Unused	73403465728	1:14.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
ami0 3 Hot spare	73403465728	1:15.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>A JNZ6></td></maxtor<>	ATLAS15K2_73SCA	A JNZ6>
				- NONE		H-LATEXXX

bioctl when we pull a disk

# bioctl	ami0							
Volume	Status	Size	Device					
ami0 0	Online	366372454400	sd0	RAID5		Δ		1
0	Online	73403465728	0:0.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
1	Online	73403465728	0:2.0	ses0	<maxtor< td=""><td>ATLAS15K2_</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_	73SCA	JNZ6>
2	Online	73403465728	0:4.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
3	Online	73403465728	0:8.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
4	Online	73403465728	1:10.0	ses1	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
5	Online	73403465728	1:12.0	ses1	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
ami0 1	Degraded	366372454400	sd1	RAID5	11% done			
0	Online	73403465728	0:1.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
1	Online	73403465728	0:3.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
2	Online	73403465728	0:5.0	ses0	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
3	Rebuild	73403465728	1:15.0	ses1	<maxtor< td=""><td>ATLAS15K2_</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_	73SCA	JNZ6>
4	Online	73403465728	1:11.0	ses1	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
5	Online	73403465728	1:13.0	ses1	<maxtor< td=""><td>ATLAS15K2_7</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_7	73SCA	JNZ6>
ami0 2	Unused	73403465728	1:14.0	ses1	<maxtor< td=""><td>ATLAS15K2_T</td><td>73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_T	73SCA	JNZ6>
								THE CTHE

bioctl when we return the disk

# bloct	L ami0						
Volume	Status	Size	Device				
ami0 0	Online	366372454400	sd0	RAID5			1
0	Online	73403465728	0:0.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
1	Online	73403465728	0:2.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
2	Online	73403465728	0:4.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
3	Online	73403465728	0:8.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
4	Online	73403465728	1:10.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
5	Online	73403465728	1:12.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
ami0 1	Degraded	366372454400	sd1	RAID5	57% done		
0	Online	73403465728	0:1.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
1	Online	73403465728	0:3.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
2	Online	73403465728	0:5.0	ses0	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
3	Rebuild	73403465728	1:15.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
4	Online	73403465728	1:11.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
5	Online	73403465728	1:13.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
ami0 2	Unused	73403465728	1:9.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6>/</td></maxtor<>	ATLAS15K2_73SCA	JNZ6>/
ami0 3	Unused	73403465728	1:14.0	ses1	<maxtor< td=""><td>ATLAS15K2_73SCA</td><td>JNZ6></td></maxtor<>	ATLAS15K2_73SCA	JNZ6>
					- K.S.		177755XXX

bioctl when we make it a spare

bioctl -H 1:9 ami0 # bioctl ami0 Volume Status Size Device ami0 0 Online 366372454400 sd0 RAID5 ATLAS15K2_73SCA JNZ6> 0 Online 73403465728 0:0.0 ses0 <MAXTOR 1 Online 73403465728 0:2.0 ATLAS15K2_73SCA JNZ6> <MAXTOR ses0 <MAXTOR ATLAS15K2_73SCA JNZ6> 2 Online 73403465728 0:4.0 ses0 <MAXTOR ATLAS15K2_73SCA JNZ6> 3 Online 73403465728 0:8.0 ses0 4 Online 73403465728 1:10.0 ATLAS15K2_73SCA JNZ6> ses1 <MAXTOR 5 Online 73403465728 1:12.0 <MAXTOR ATLAS15K2_73SCA JNZ6> ses1 ami0 1 Degraded RAID5 60% done 366372454400 sd1 73403465728 0:1.0 ATLAS15K2_73SCA JNZ6> 0 Online <MAXTOR ses0 1 Online 73403465728 0:3.0 <MAXTOR ATLAS15K2_73SCA JNZ6> ses0 2 Online <MAXTOR ATLAS15K2_73SCA JNZ6> 73403465728 0:5.0 ses0 ATLAS15K2_73SCA JNZ6> 3 Rebuild 73403465728 1:15.0 <MAXTOR ses1 4 Online 73403465728 1:11.0 <MAXTOR ATLAS15K2_73SCA JNZ6> ses1 5 Online 73403465728 1:13.0 ATLAS15K2_73SCA JNZ6> <MAXTOR ses1 ami0 2 Hot spare <MAXTOR ATLAS15K2_73SCA JNZ6> 73403465728 1:9.0 ses1 ATLAS15K2_73SCA JNZ6> <MAXTOR ami0 3 Unused 73403465728 1:14.0 ses1

other bioctl magic

- help! i am bleeding from the ears (or waking people up when testing at Iam)!
 - Disable the alarm with:
 # bioctl -a quiet ami0
- help! show me the disk i need to replace!
 - Blink it with:
 # bioctl -b 1.9 ami0

RAID and sensors

- along with temperatures and voltages, we have a type of sensor for reporting disk status
- provides near realtime information on the health of a RAID disk:

hw.sensors.0=ami0, sd0, drive online, OK
hw.sensors.1=ami0, sd1, drive online, WARNING

raid disks can be monitored like all other hw

SES and SAF-TE

- short for "SCSI Enclosure Services" and "SCSI Accessed Fault-Tolerant Enclosures"
- they're needed for one main reason
 - SCSI does not support hot-plug without either one of these devices. in the above example the insertion of the disk in slot I:9 would go undetected without an enclosure
- also provide normal temp/volt/etc sensors

supported hardware

- ami(4) LSI Logic MegaRAID ATA/SCSI/SATA
 - older cards don't grok the commands
- mfi(4) LSI Logic MegaRAID SAS
- arc(4) Areca SATA RAID Controllers
- ciss(4) Compaq Smart Array 5/6 RAID
- ses(4), safte(4) enclosures

what's new in 4.0

- mfi(4), arc(4), plus bio support for these controllers
- bio on ciss(4)
- rebuild progress for volumes

conclusion

- RAID isn't some arcane voodoo (no chickens were harmed in the development of this software), and sensors are not magical
- only a small amount of functionality is necessary to create useful RAID management
- if we can do it, so can you. allowing vendors to provide their tools rather than doco is hurting users. imagine ifconfig by vendors

conclusion again

- RAID and RAID management isn't magic
- it is extremely simple in reality, and any vendor who says otherwise is a liar
- we have shown that RAID management is easier than ifconfig

future work

- both sensors and bio have been around for a while now. we intend to go back and rework these a bit based on our experience. still works in progress
- for sensors
 - a new sensorsd with a hetero config file
 - new sensor types and drivers for new hw

i have a dream... (the future)

- for bio
 - add support to other RAID cards: mpi(4), gdt(4), ips(4)
 - S.M.A.R.T. support for physical disks so we can predict failure
 - convince vendors to give us docs

thx

- marco, krw, pascoe, deraadt for putting up with my stupid questions
- marco and deraadt for giving me the freedom to play around with this stuff
- donators for giving me toys to play with
- grange, for being so talented