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“Only failure makes us experts”

Introduction
• Describe the security measures in OpenSSH

– What they are
– How we implemented them
– How well they work

• Why?
– OpenSSH is an important and widely used network

application
– To convince you to use these techniques in your

software



“Only failure makes us experts”

OpenSSH overview
• Project started in September 1999

– Portability project started one month later

– Killed telnet and rsh within two years (except for
some router manufacturers)

• Most popular SSH implementation (over 87%
of servers)

• Written for Unix-like operating systems

• Based on legacy codebase
– Incremental approach to development
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Our darker moments…
• Critical security problems (remote exploit):

– deattack.c integer overflow (Zalewski, 2001)

– channels.c off-by-one (Pol, 2002)

– Challenge-response input check bug (Dowd, 2002)

– buffer.c integer overflow (Solar Designer, 2003)

– Incorrect PAM authentication check (OUSPG, 2003)

• More lesser bugs (we take a paranoid view
and announce everything - exploitable or not)

• But also…
– Zlib heap corruption (Cox, et al., 2002)

– OpenSSL ASN.1 bugs (NISCC and Henson, 2003)

– Zlib inftrees.c overflow (Ormandy, 2005)



“Only failure makes us experts”

Attack surface1

• Amount of application code is exposed to attack
– Scaled up for code that is exposed to anonymous

(unauthenticated) attackers
– Scaled up for code that runs with privilege

• The less the better!
• Corresponds to Saltzer and Schroeder’s

“Simplicity of Mechanism” and “Least Privilege”
design principles2

• Good qualitative measure of system
“attackability” (quantitative variants exist)

[1] M. Howard, “Fending Off Future Attacks by Reducing Attack Surface”,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure02132003.asp, 2003

[2] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems”, pp.
1278-1308, Proceedings of the IEEE 63, number 9, September 1975
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What can we do?
• Audit
• Add paranoia (defensive programming)

• Replace or modify unsafe APIs
• Replace complex and risky code with limited

implementations
• Minimise / separate privilege
• Change the protocol
• Help OS-level security measures work better
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Auditing
• OpenSSH has been repeatedly audited

throughout its life

• Auditing does not mean “find a bug and fix it”
- it means “find a bug, and fix the class of
problems its represents”

– If a developer makes a mistake, they are likely to
have made it multiple times

• Bugs will slip through audits - most of the
previously mentioned ones did.

• Necessary, but not sufficient
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Paranoia / input sanitisation
• Input sanitisation is a necessity for all network

applications
• Avoid passing untrusted data to system APIs (or

any complex API) until it has passed basic
format, consistency and sanity checks

• Constrain values to expected ranges
– Integer overflows are a particular concern
– Denial of service by allocating large amounts of

memory

• Criticism: checks can bloat code
• Criticism: infeasible to catch every pathological

case
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Elimination of unsafe APIs
• Some APIs are difficult or impossible to use

safely:
– In 2007, the worst offenders are long gone
– strcpy, strncpy  strlcpy, etc. were done early

• Some are safe, but are simply painful to use:
– strtoul() needs seven lines of support to robustly

detect integer parsing errors1

– Use strtonum()
• Some have subtle problems:

– setuid() - may not permanently drop privileges on all
platforms2

– OpenSSH replaced with setresuid()
[1] Paul Janzen, Examples section of OpenBSD strtol manual page, 1999
[2] Hao Chen, David Wagner and Drew Dean, “Setuid Demystified”, pp. 170-190, Proceedings of the

11th USENIX security symposium, 2002
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Change the API
• Certain APIs lead to coding idioms than lend

themselves to unsafe use
• Example: POSIX’s use of -1 as an error indicator

– Overloading of return value as both a quantity and
error indicator encourages the mixing of signed and
unsigned types, leading to integer overflows
size_t rlen = read(fd, tmpbuf, tmpbuf_len); /* (oops!) */

if (r < 0 || r > sizeof(buf))

return -1;

memcpy(buf, tmpbuf, rlen);

– Change the API - OpenSSH’s atomicio read/write
wrapper returns unsigned

• New code should not overload return value:
– E.g. return quantity via size_t* argument
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Change the API
• Dynamic array initialisation is frequently a

source of integer overflows
– malloc/realloc argument is almost always a product

struct blah *array = malloc(n * sizeof(*array));

/* later… */

array = realloc(++n * sizeof(*array));

• (n *sizeof(*array) > SIZE_T_MAX) -> wrap!
• Change the API: overflow checking allocators:

struct blah *array = xcalloc(n, sizeof(*array));

/* later… */

array = xrealloc(array, ++n, sizeof(*array));

– Ensure that (SIZE_T_MAX / nmemb) >= size
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Change the API
• Don’t be constrained by an unsafe API

• Like auditing:
– Treat the discovery of a bug as evidence that some

wider may be wrong
– Fix the underlying problem

• Criticism: inventing new APIs can make an
application’s code harder to read or learn

– Choose sensible function names

• If we had implemented the xcalloc/xrealloc
change sooner, we would have avoided at least
one bug!
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Replacement of complex code
• Very complex code can lurk beneath a simple

function call

• Example: RSA and DSA signature validation

• Previously used OpenSSL RSA_verify and
DSA_verify

• Called for public key authentication

– I.e. 100% exposed to pre-auth attacker

• OpenSSL uses a full ASN.1 parser

– ASN.1 is very complex and deeply scary

– Nearly 300 lines of code, not including memory
allocation, logging and the actual crypto

– Has had remotely exploitable bugs
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Replacement of complex code
• Replaced with minimal version that use fixed

signature representations (no ASN.1)

– Still use raw RSA/DSA cryptographic primitives

• Criticism: separate implementation does not
benefit from ongoing improvements to
mainstream version

– So far, has not needed any maintenance

• This saved us from quite a few bugs:
CVE-2003-0545, CVE-2003-0543, CVE-2003-0544,
CVE-2003-0851, CVE-2006-2937, CVE-2006-2940,
CVE-2006-4339 (Bleichenbacher e=3 RSA attack)
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Privilege separation
• Very important design principle: applications

should run with as little privilege as possible

• Example: Apache web server

– Requires privilege to bind to low numbered ports,
open log files, read SSL keys, etc.

– Drop privilege before handling network data

• Result: a compromise gives an attacker access
to a low privilege account

– Can still locally escalate privilege

– chroot/jail helps

• This model does not work for OpenSSH as it
needs privilege throughout its life
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Privilege separation
• Solution: privilege separation1 - split the

application:

– monitor - handle actions that require privilege

– slave - everything else (crypto, network traffic, etc.)

• The monitor should be as small (code-wise) as
possible

– Less code -> smaller attack surface, fewer bugs

• slave is always chrooted to /var/empty

– Only access to system is via messages passed with
master

– Only escape is via kernel bugs
[1] Niels Provos, “Preventing privilege escalation”, Technical report TR-02-2, University of

Michigan, CITI, August 2002
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Privilege separation
• For OpenSSH privilege separation (privsep),

there are three different levels of privilege:

– monitor -> always root

– slave before user authentication -> run as dedicated
user

– slave after user authentication -> run as logged in
user

• Note that a compromise of a post-auth slave
does not gain the attacker any more privilege

• When first implemented, estimated privilege
reduction was ~66% (measured in lines of
code)
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Privilege separation
• Splitting unprivileged code from privileged is

insufficient:

– Attacker compromises slave

– Fakes messages to master, requests system access

• So the monitor must enforce constraints on what
privileged actions that slave may request of it

– Do not spawn subprocesses before authentication

– Do not allow unlimited authentication attempts

– Some requests will occur only once in a normal protocol
flow

• OpenSSH’s monitor is structured as a state machine

– Bonus: second, independent layer of authentication checks
serves as safeguard against logic errors
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Privilege separation
• Next problem: a SSH connection requires a significant

amount of state

– Crypto keys and initialisation vectors, input/output buffers

– Compression (zlib) state

• When authentication occurs, all this must be serialised
and transferred from the preauth to the postauth slave

• Unfortunately, zlib has no way to serialise its state

– But: it does provide memory allocation hooks

• OpenSSH implements a memory manager using
anonymous shared memory

– Preauth allocations shared with monitor, inherited by
postauth slave

– Monitor never uses zlib - no chance of exploit via
deliberately corrupted state
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Privilege separation
• Criticism: attacker may escape via kernel bugs

• Criticism: privilege separation adds complexity

– Cleaner if designed-in, rather than retrofitted

• Criticism: OpenSSH implementation uses same buffer
API as network code

– Vulnerability in buffer code could be used to compromise
both slave and monitor

– There have been bugs in the buffer code found before

– Alternative is to have two different RPC implementations

– Not clear whether this would be an improvement: more
heterogeneous vs. greater attack surface

• Privilege separation has reduced the criticality of all but
one bugs since its introduction (early 2002)

• Second layer of checking has avoided two critical bugs
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Protocol changes
• Sometimes the protocol specification requires risky

things

• OpenSSH’s case: activation of compression before user
authentication is complete

• Result: compression code is exposed to unauthenticated
users

– attack_surface++

• Solution: change the protocol!

• Introduce zlib@openssh.com method

– Exactly the same compression as standard zlib method

– Only enabled after user has authenticated



“Only failure makes us experts”

Protocol changes
• Simple protocol change

• Simple code change (~85 lines of code, mostly
mechanical)

• Backwards compatible (SSH protocol has a
nice extension mechanism)

• Effectively removed ~6000 lines of code (libz)
from preauth attack surface

• Criticism: OpenSSH only

• Saved us from one zlib bug since
implementation (mid-2005)
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Assist OS-level security measures
• Good operating systems are staring to build in

attack resistance/mitigation measures

– OpenBSD

– Windows Vista

– Linux (with 3rd party patches)

• Attack resistance most commonly uses
runtime randomisation

– Executable load address

– Shared library load addresses

– Stack protection cookies

– Stackgap

– Memory allocations
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Assist OS-level security measures
• Most Unix daemons use a fork()-and-service

model

– accept() -> fork() -> do work -> exit()

– Simple and robust

– Unfortunately all randomisations are applied once -
per daemon instance

• OpenSSH solution: self-reexecution

– fork() -> exec(sshd) -> do work -> exit()

– Result: each connection receives all randomisations
that the OS provides

– Additional benefit: no leakage of information from
superserver to per-connection server
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Assist OS-level security measures
• Some subtlety in implementation

– Configuration must be passed from super-server to
re-executed instance

• On average, re-execution doubles attack effort
– Sampling without replacement -> sampling with

replacement

• Attack becomes non-deterministic
– No guarantee of success after N attempts

• Criticism: increases connection start-up costs

• Criticism: little benefit to platforms that do not
support attack mitigation
– It is time that they did (if Microsoft can do it, why

not free operating systems?)
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Future directions
• Prevent return to executable

– If return-to-libc exploits are prevented by library
randomisation, attacker can still return to the
executable itself

– E.g. to do_exec() function

– sshd could implement additional checks to ensure
that these functions cannot be called unless
authentication has succeeded

– May make some attacks more difficult



“Only failure makes us experts”

Future directions
• Separate executables for privsep

– Current privilege separation uses single executable

– Ease of implementation and migration, easy to
disable and get pre-privsep behaviour back

– Lots of unused code lying around in monitor

• Return to executable attacks again

– Separating the monitor into a dedicated executable
would remove this, and make the implementation
more clear

– Some things may get harder - zlib shared memory
trick may be impossible or more complicated

– postfix1 is a good example of a privilege separation
model that uses independent cooperating processes

[1] Wietse Venema, Postfix MTA, http://www.postfix.org/
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Future directions
• Pervasive testing

– OpenSSH has a decent set of regression tests

– Good for checking that your last commit didn’t break
anything

– Beyond some basic sanity tests, they don’t help at all
with security

– Fuzz testing is a possible approach, though a good
SSH fuzzer is difficult to write

• OUSPG has built one (no bugs found in OpenSSH :)

– Unit tests would be better, but would be a lot of
work to do retrospectively
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Future directions
• Code generation

– Lots of OpenSSH is mechanical code:

• Packet parsing

• Some sanity checks

• Channel state machine

– Idea: generate some/all of this code from a high-
level description

• High-level description will be easier to audit

• Code generation eliminates cut-and-paste errors

– Criticism: bugs in the code generator

– Criticism: replacing proven and working code with
untried code
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Conclusion
• Relying on never making a mistake is doomed

to failure

• Audits will not catch all mistakes

• Application developers can introduce additional
security measures that reduce the likelihood
and severity of bugs

• These measures are not difficult to implement
and can be retrofitted to existing software

– Even easier if designed in from the start



Questions?


