
Security Measures in OpenSSH

Damien Miller
ダミアン　ミーラー

djm@openbsd.org

“Only failure makes us experts”

Introduction
• Describe the security measures in OpenSSH

– What they are
– How we implemented them
– How well they work

• Why?
– OpenSSH is an important and widely used network

application
– To convince you to use these techniques in your

software

“Only failure makes us experts”

OpenSSH overview
• Project started in September 1999

– Portability project started one month later

– Killed telnet and rsh within two years (except for
some router manufacturers)

• Most popular SSH implementation (over 87%
of servers)

• Written for Unix-like operating systems

• Based on legacy codebase
– Incremental approach to development

“Only failure makes us experts”

Our darker moments…
• Critical security problems (remote exploit):

– deattack.c integer overflow (Zalewski, 2001)

– channels.c off-by-one (Pol, 2002)

– Challenge-response input check bug (Dowd, 2002)

– buffer.c integer overflow (Solar Designer, 2003)

– Incorrect PAM authentication check (OUSPG, 2003)

• More lesser bugs (we take a paranoid view
and announce everything - exploitable or not)

• But also…
– Zlib heap corruption (Cox, et al., 2002)

– OpenSSL ASN.1 bugs (NISCC and Henson, 2003)

– Zlib inftrees.c overflow (Ormandy, 2005)

“Only failure makes us experts”

Attack surface1

• Amount of application code is exposed to attack
– Scaled up for code that is exposed to anonymous

(unauthenticated) attackers
– Scaled up for code that runs with privilege

• The less the better!
• Corresponds to Saltzer and Schroeder’s

“Simplicity of Mechanism” and “Least Privilege”
design principles2

• Good qualitative measure of system
“attackability” (quantitative variants exist)

[1] M. Howard, “Fending Off Future Attacks by Reducing Attack Surface”,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure02132003.asp, 2003

[2] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems”, pp.
1278-1308, Proceedings of the IEEE 63, number 9, September 1975

Command Execution Interactive Shell File Transfer

Accept Connection

Negotiate Encryption,
exchange keys

Attempt authentication

Authentication
successful?

Disconnect

Record login
(utmp, wtmp, lastlog)

Allocate TTY

Execute shell

Record logout

Execute file server
scp / sftp-server

Execute command

No Authentication
limit reached?

No

YesYes

sshd overview

Complex crypto /
parsing untrusted data

Root privileges required
(setuid, logging, TTY,
authentication, etc.)

“Only failure makes us experts”

What can we do?
• Audit
• Add paranoia (defensive programming)

• Replace or modify unsafe APIs
• Replace complex and risky code with limited

implementations
• Minimise / separate privilege
• Change the protocol
• Help OS-level security measures work better

“Only failure makes us experts”

Auditing
• OpenSSH has been repeatedly audited

throughout its life

• Auditing does not mean “find a bug and fix it”
- it means “find a bug, and fix the class of
problems its represents”

– If a developer makes a mistake, they are likely to
have made it multiple times

• Bugs will slip through audits - most of the
previously mentioned ones did.

• Necessary, but not sufficient

“Only failure makes us experts”

Paranoia / input sanitisation
• Input sanitisation is a necessity for all network

applications
• Avoid passing untrusted data to system APIs (or

any complex API) until it has passed basic
format, consistency and sanity checks

• Constrain values to expected ranges
– Integer overflows are a particular concern
– Denial of service by allocating large amounts of

memory

• Criticism: checks can bloat code
• Criticism: infeasible to catch every pathological

case

“Only failure makes us experts”

Elimination of unsafe APIs
• Some APIs are difficult or impossible to use

safely:
– In 2007, the worst offenders are long gone
– strcpy, strncpy strlcpy, etc. were done early

• Some are safe, but are simply painful to use:
– strtoul() needs seven lines of support to robustly

detect integer parsing errors1

– Use strtonum()
• Some have subtle problems:

– setuid() - may not permanently drop privileges on all
platforms2

– OpenSSH replaced with setresuid()
[1] Paul Janzen, Examples section of OpenBSD strtol manual page, 1999
[2] Hao Chen, David Wagner and Drew Dean, “Setuid Demystified”, pp. 170-190, Proceedings of the

11th USENIX security symposium, 2002

“Only failure makes us experts”

Change the API
• Certain APIs lead to coding idioms than lend

themselves to unsafe use
• Example: POSIX’s use of -1 as an error indicator

– Overloading of return value as both a quantity and
error indicator encourages the mixing of signed and
unsigned types, leading to integer overflows
size_t rlen = read(fd, tmpbuf, tmpbuf_len); /* (oops!) */

if (r < 0 || r > sizeof(buf))

return -1;

memcpy(buf, tmpbuf, rlen);

– Change the API - OpenSSH’s atomicio read/write
wrapper returns unsigned

• New code should not overload return value:
– E.g. return quantity via size_t* argument

“Only failure makes us experts”

Change the API
• Dynamic array initialisation is frequently a

source of integer overflows
– malloc/realloc argument is almost always a product

struct blah *array = malloc(n * sizeof(*array));

/* later… */

array = realloc(++n * sizeof(*array));

• (n *sizeof(*array) > SIZE_T_MAX) -> wrap!
• Change the API: overflow checking allocators:

struct blah *array = xcalloc(n, sizeof(*array));

/* later… */

array = xrealloc(array, ++n, sizeof(*array));

– Ensure that (SIZE_T_MAX / nmemb) >= size

“Only failure makes us experts”

Change the API
• Don’t be constrained by an unsafe API

• Like auditing:
– Treat the discovery of a bug as evidence that some

wider may be wrong
– Fix the underlying problem

• Criticism: inventing new APIs can make an
application’s code harder to read or learn

– Choose sensible function names

• If we had implemented the xcalloc/xrealloc
change sooner, we would have avoided at least
one bug!

“Only failure makes us experts”

Replacement of complex code
• Very complex code can lurk beneath a simple

function call

• Example: RSA and DSA signature validation

• Previously used OpenSSL RSA_verify and
DSA_verify

• Called for public key authentication

– I.e. 100% exposed to pre-auth attacker

• OpenSSL uses a full ASN.1 parser

– ASN.1 is very complex and deeply scary

– Nearly 300 lines of code, not including memory
allocation, logging and the actual crypto

– Has had remotely exploitable bugs

“Only failure makes us experts”

Replacement of complex code
• Replaced with minimal version that use fixed

signature representations (no ASN.1)

– Still use raw RSA/DSA cryptographic primitives

• Criticism: separate implementation does not
benefit from ongoing improvements to
mainstream version

– So far, has not needed any maintenance

• This saved us from quite a few bugs:
CVE-2003-0545, CVE-2003-0543, CVE-2003-0544,
CVE-2003-0851, CVE-2006-2937, CVE-2006-2940,
CVE-2006-4339 (Bleichenbacher e=3 RSA attack)

“Only failure makes us experts”

Privilege separation
• Very important design principle: applications

should run with as little privilege as possible

• Example: Apache web server

– Requires privilege to bind to low numbered ports,
open log files, read SSL keys, etc.

– Drop privilege before handling network data

• Result: a compromise gives an attacker access
to a low privilege account

– Can still locally escalate privilege

– chroot/jail helps

• This model does not work for OpenSSH as it
needs privilege throughout its life

“Only failure makes us experts”

Privilege separation
• Solution: privilege separation1 - split the

application:

– monitor - handle actions that require privilege

– slave - everything else (crypto, network traffic, etc.)

• The monitor should be as small (code-wise) as
possible

– Less code -> smaller attack surface, fewer bugs

• slave is always chrooted to /var/empty

– Only access to system is via messages passed with
master

– Only escape is via kernel bugs
[1] Niels Provos, “Preventing privilege escalation”, Technical report TR-02-2, University of

Michigan, CITI, August 2002

“Only failure makes us experts”

Privilege separation
• For OpenSSH privilege separation (privsep),

there are three different levels of privilege:

– monitor -> always root

– slave before user authentication -> run as dedicated
user

– slave after user authentication -> run as logged in
user

• Note that a compromise of a post-auth slave
does not gain the attacker any more privilege

• When first implemented, estimated privilege
reduction was ~66% (measured in lines of
code)

“Only failure makes us experts”

Privilege separation
• Splitting unprivileged code from privileged is

insufficient:

– Attacker compromises slave

– Fakes messages to master, requests system access

• So the monitor must enforce constraints on what
privileged actions that slave may request of it

– Do not spawn subprocesses before authentication

– Do not allow unlimited authentication attempts

– Some requests will occur only once in a normal protocol
flow

• OpenSSH’s monitor is structured as a state machine

– Bonus: second, independent layer of authentication checks
serves as safeguard against logic errors

“Only failure makes us experts”

Privilege separation
• Next problem: a SSH connection requires a significant

amount of state

– Crypto keys and initialisation vectors, input/output buffers

– Compression (zlib) state

• When authentication occurs, all this must be serialised
and transferred from the preauth to the postauth slave

• Unfortunately, zlib has no way to serialise its state

– But: it does provide memory allocation hooks

• OpenSSH implements a memory manager using
anonymous shared memory

– Preauth allocations shared with monitor, inherited by
postauth slave

– Monitor never uses zlib - no chance of exploit via
deliberately corrupted state

“Only failure makes us experts”

Privilege separation
• Criticism: attacker may escape via kernel bugs

• Criticism: privilege separation adds complexity

– Cleaner if designed-in, rather than retrofitted

• Criticism: OpenSSH implementation uses same buffer
API as network code

– Vulnerability in buffer code could be used to compromise
both slave and monitor

– There have been bugs in the buffer code found before

– Alternative is to have two different RPC implementations

– Not clear whether this would be an improvement: more
heterogeneous vs. greater attack surface

• Privilege separation has reduced the criticality of all but
one bugs since its introduction (early 2002)

• Second layer of checking has avoided two critical bugs

“Only failure makes us experts”

Protocol changes
• Sometimes the protocol specification requires risky

things

• OpenSSH’s case: activation of compression before user
authentication is complete

• Result: compression code is exposed to unauthenticated
users

– attack_surface++

• Solution: change the protocol!

• Introduce zlib@openssh.com method

– Exactly the same compression as standard zlib method

– Only enabled after user has authenticated

“Only failure makes us experts”

Protocol changes
• Simple protocol change

• Simple code change (~85 lines of code, mostly
mechanical)

• Backwards compatible (SSH protocol has a
nice extension mechanism)

• Effectively removed ~6000 lines of code (libz)
from preauth attack surface

• Criticism: OpenSSH only

• Saved us from one zlib bug since
implementation (mid-2005)

“Only failure makes us experts”

Assist OS-level security measures
• Good operating systems are staring to build in

attack resistance/mitigation measures

– OpenBSD

– Windows Vista

– Linux (with 3rd party patches)

• Attack resistance most commonly uses
runtime randomisation

– Executable load address

– Shared library load addresses

– Stack protection cookies

– Stackgap

– Memory allocations

“Only failure makes us experts”

Assist OS-level security measures
• Most Unix daemons use a fork()-and-service

model

– accept() -> fork() -> do work -> exit()

– Simple and robust

– Unfortunately all randomisations are applied once -
per daemon instance

• OpenSSH solution: self-reexecution

– fork() -> exec(sshd) -> do work -> exit()

– Result: each connection receives all randomisations
that the OS provides

– Additional benefit: no leakage of information from
superserver to per-connection server

“Only failure makes us experts”

Assist OS-level security measures
• Some subtlety in implementation

– Configuration must be passed from super-server to
re-executed instance

• On average, re-execution doubles attack effort
– Sampling without replacement -> sampling with

replacement

• Attack becomes non-deterministic
– No guarantee of success after N attempts

• Criticism: increases connection start-up costs

• Criticism: little benefit to platforms that do not
support attack mitigation
– It is time that they did (if Microsoft can do it, why

not free operating systems?)

“Only failure makes us experts”

Future directions
• Prevent return to executable

– If return-to-libc exploits are prevented by library
randomisation, attacker can still return to the
executable itself

– E.g. to do_exec() function

– sshd could implement additional checks to ensure
that these functions cannot be called unless
authentication has succeeded

– May make some attacks more difficult

“Only failure makes us experts”

Future directions
• Separate executables for privsep

– Current privilege separation uses single executable

– Ease of implementation and migration, easy to
disable and get pre-privsep behaviour back

– Lots of unused code lying around in monitor

• Return to executable attacks again

– Separating the monitor into a dedicated executable
would remove this, and make the implementation
more clear

– Some things may get harder - zlib shared memory
trick may be impossible or more complicated

– postfix1 is a good example of a privilege separation
model that uses independent cooperating processes

[1] Wietse Venema, Postfix MTA, http://www.postfix.org/

“Only failure makes us experts”

Future directions
• Pervasive testing

– OpenSSH has a decent set of regression tests

– Good for checking that your last commit didn’t break
anything

– Beyond some basic sanity tests, they don’t help at all
with security

– Fuzz testing is a possible approach, though a good
SSH fuzzer is difficult to write

• OUSPG has built one (no bugs found in OpenSSH :)

– Unit tests would be better, but would be a lot of
work to do retrospectively

“Only failure makes us experts”

Future directions
• Code generation

– Lots of OpenSSH is mechanical code:

• Packet parsing

• Some sanity checks

• Channel state machine

– Idea: generate some/all of this code from a high-
level description

• High-level description will be easier to audit

• Code generation eliminates cut-and-paste errors

– Criticism: bugs in the code generator

– Criticism: replacing proven and working code with
untried code

“Only failure makes us experts”

Conclusion
• Relying on never making a mistake is doomed

to failure

• Audits will not catch all mistakes

• Application developers can introduce additional
security measures that reduce the likelihood
and severity of bugs

• These measures are not difficult to implement
and can be retrofitted to existing software

– Even easier if designed in from the start

Questions?

